
Yang et al. Light: Science & Applications           (2024) 13:96 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-024-01450-0 www.nature.com/lsa

ART ICLE Open Ac ce s s

Advancing insights into in vivo meningeal
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Abstract
Meningeal lymphatic vessels (mLVs) play a pivotal role in regulating metabolic waste from cerebrospinal fluid (CSF).
However, the current limitations in field of view and resolution of existing imaging techniques impede understanding
the stereoscopic morphology and dynamic behavior of mLVs in vivo. Here, we utilized dual-contrast functional
photoacoustic microscopy to achieve wide-field intravital imaging of the lymphatic system, including mLVs and
glymphatic pathways. The stereoscopic photoacoustic microscopy based on opto-acoustic confocal features has a
depth imaging capability of 3.75 mm, facilitating differentiation between mLVs on the meninges and glymphatic
pathways within the brain parenchyma. Subsequently, using this imaging technique, we were able to visualize the
dynamic drainage of mLVs and identify a peak drainage period occurring around 20–40 min after injection, along with
determining the flow direction from CSF to lymph nodes. Inspiringly, in the Alzheimer’s disease (AD) mouse model, we
observed that AD mice exhibit a ~ 70% reduction in drainage volume of mLVs compared to wild-type mice. With the
development of AD, there is be continued decline in mLVs drainage volume. This finding clearly demonstrates that the
AD mouse model has impaired CSF drainage. Our study opens up a horizon for understanding the brain’s drainage
mechanism and dissecting mLVs-associated neurological disorders.

Introduction
The central nervous system (CNS) has long been con-

sidered an ‘immune privilege’ organ lacking lymphatic
vessels that transport immune cells1–3. However, recent
studies on intracranial clearance have revealed the pre-
sence of meningeal lymphatic vessels (mLVs) and the
glymphatic pathway for interstitial fluids and cere-
brospinal fluid (CSF) drainage4–8. The mLVs continuously
drain macromolecules, wastes, and superfluous liquids
from the CNS to the periphery by connecting deep

cervical lymph nodes (cLNs) and play an important role in
the active transport of immune cells9–11. Among them,
permeable collecting lymphatics and capillary lymphatics
are distributed along the sigmoid sinus and petrosqua-
mous sinus of the skull base. The lymphatic vessels
located in the meninges are distributed along the trans-
verse sinus (TS) and superior sagittal sinus (SSS)12–15. It is
important to identify and characterize the routes
responsible for CNS lymphatic drainage because paths of
these may offer a valuable approach to the treatment of
CNS-associated neuroinflammatory conditions.
Disruption of the mLVs and cerebral vessels (CVs) have

been reported to occur and contribute to the disease
progression during aging as well as in neurodegenerative
and neurological diseases, such as Alzheimer’s disease
(AD)16–19, Parkinson’s disease20, traumatic brain
injury21–23, encephalitis24,25, and brain tumor26,27.
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Differences in the morphology and function of mLVs and
CVs based on sex and age may also be related to sex and
age differences in the incidence of certain neurological
diseases28–30. Retrieving a whole-brain perspective of
mLVs and CVs with sufficient resolution can enhance
understanding of the complexity of brain immune func-
tion. A more comprehensive description of lymphatic and
vascular systems can effectively illustrate the immune
function of the brain and how the lymphatic and vascular
system contributes to the pathogenesis of various diseases,
involving immune and inflammatory responses and their
respective role. Therefore, there is a need for an intravital
imaging method capable of simultaneously visualizing
mLVs and CVs with high temporal and spatial resolution
to gain insight into immune function of the brain.
Previous studies have observed these structures

through the use of electron microscopy, histology,
immunofluorescence (IF), and nuclear magnetic reso-
nance imaging (MRI). IF with the merit of excellent
resolution has been widely utilized to assess the struc-
ture and function of mLVs and CVs in various
fields22,26. However, it requires staining and imaging
in vitro, which limits its application for dynamic in vivo
monitoring. Similarly, high Tesla MRI is available for
brain imaging in living animals31,32. In a few studies, the
depiction of CSF from mLVs to cLNs has been achieved
in the human brain33,34. MRI allows for in vivo mac-
roscopic evaluation of CVs and mLVs using intravenous
and intrathecal Gadolinium (Gd)15. It is inevitable that
even the spatial resolution of high Tesla MRI is still
insufficient for imaging structural information of mLVs
in mice. The use of a stereo microscope can quantify
the transport of tracers to the blood and lymph nodes29,
but it is unable to distinguish mLVs from the results.
Multiphoton microscopy can also capture the dynamics
of mLVs and CVs. Intravital two-photon microscope
approaches with various probes have enabled the
monitoring of CSF tracers at the microscopic scale12,30.
It’s important to note that these methods often involve
craniotomy, which can disrupt brain hemostasis or offer
a limited field of view (FOV) where the tracer can only
be observed in a small brain region. Therefore, there is a
need for high-resolution three-dimensional simulta-
neous imaging of mLVs and CVs in vivo to facilitate
safer and more comprehensive visualization of their
structure and function, advancing research related to
the drainage pathway of mLVs or CSF. As a hybrid
imaging technique, photoacoustic imaging combines
the advantages of optical resolution and acoustic
penetration depth and has made progress in brain
imaging and lymphatic imaging in recent years. Using
wide-field and deep-penetration three-dimensional
(3D) photoacoustic tomography with a hemispherical
detector array, blood vessels and lymphatic vessels in

patient’s limb could be imaged35–37, which showed the
advantage of photoacoustic imaging in vessel structure
and potential clinical application. However, the spatial
resolution of this system is still limited for stereoscopic
visualization of the mLVs that are tens of microns in
size within the mouse brain. In addition, as a newly
discovered drainage channel, the structural feature of
mLVs is not clear. Given the current situation, a tech-
nical means with high spatial resolution that can spe-
cifically distinguish CVs and mLVs is needed to
accurately assess the morphology and function of CVs
and mLVs.
In the article, we demonstrate intravital co-localized

imaging of mLVs and CVs using a dual-contrast func-
tional photoacoustic microscope (DCF-PAM) as shown
in Fig. 1. DCF-PAM provides a lateral resolution of
8.9 μm and 6.1 μm within a FOV of 12 × 12 mm2. The
scanning range encompasses the transverse section of
the entire mouse brain. For imaging mLVs, an exo-
genous contrast tracer is designed by loading the dye
indocyanine green (ICG) onto ovalbumin (OVA). After
entering CSF, the exogenous contrast tracer (OVA-
ICG) is largely drained through mLVs and glymphatic
pathways. The endogenous contrast hemoglobin is used
for imaging CVs. Two wavelengths are focused on the
same depth position and scanned alternately to image
tracers and CVs. The stereoscopic photoacoustic (PA)
imaging of the tracers is effectively segmented into the
mLVs and glymphatic system. The wide-field PA ima-
ging of mLVs aligns with the structures revealed by
immunofluorescence of mLVs, confirming that DCF-
PAM enables dynamic monitoring of CSF drainage
while maintaining high resolution. The 9.4 T MRI and
PA B-scan illustrations exhibit spatial correspondence,
with the latter presenting greater detail, resolution, and
sensitivity. Naturally, DCF-PAM allows for long-term
monitoring of live animals during testing. The time-
phased recording of mLVs demonstrates the drainage
process of CSF from the mLVs to the cLNs. Our data
revealed that the mLVs function is remarkably dysre-
gulated in AD mice, including disrupted drainage
volume with decreased gene expression of lymphatic
function. Such alterations are likely due to Aβ deposi-
tion, which consequently led to impaired CSF drainage
function. Moreover, the reduced drainage volume of
mLVs in young mice compared to adult mice maybe
because of incomplete development of the meningeal
function. Collectively, intravital co-localized imaging of
mLVs and CVs is demonstrated using DCF-PAM,
enabling wide-field monitoring of mLVs and CVs and
capturing dynamic drainage and clearance processes in
the brain. This approach holds promise as a valuable
tool for studying diseases associated with mLVs, such as
neuroinflammation and neurodegenerative disorders.
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Results
Characterization of dual-contrast functional microscopy
and tracer
The schematic of DCF-PAM is depicted in Fig. 2a. The

near-infrared (NIR) laser, emitted by the optical para-
metric oscillator (NT-200, Ekapla), operates at a repeti-
tion rate of 2.5 kHz. The NIR laser undergoes spatial
filtering through an attenuator and a spatial filter, fol-
lowed by reflection from a dielectric mirror and trans-
mission through a dichroic mirror. It is then combined
with the visible laser. The 532-nm pulsed laser (DTL-
314QT, Laser-export) is coupled to a single-mode fiber
using a fiberport coupler (PAF2-7A, Thorlabs). The visi-
ble laser, collimated by a collimator (F240FC-532, Thor-
labs), is reflected by the dichroic mirror and focused by a
microscope objective lens (GCO-2111, Daheng). A self-
focused high-frequency ultrasound transducer (central
frequency: ~40MHz, bandwidth: 21-63MHz, focal
length: 8 mm) with a ring-shaped PVDF-based piezo-
electric element (3 mm inner diameter, 8 mm outer dia-
meter), is positioned beneath the microscope lens. The
laser emits from the center of the ring and irradiates the
mouse brain. A two-dimensional motorized translation
stage (LS2-25T, Jiancheng optics) located beneath the
mouse brain is utilized for scanning. The motorized
translation stage translates the mouse in the x and y
directions for raster scanning. The collected PA signals

are amplified by a 50-dB gain amplifier (LNA-650, RF
Bay). Subsequently, the amplified PA signals are digitized
by a data acquisition card (M4i.4420, Spectrum). Simul-
taneously, the NIR laser is split by a beam splitter, and the
signal trigger is captured by a photodiode and transmitted
to a field-programmable gate array (FPGA). The lasers’
triggers, the motorized transducer stage, and the collec-
tion of PA signals are all controlled by FPGA.
During dual-wavelength illumination, all lasers are fired

at a frequency of 2.5 kHz, with a delay time of 200 μs
between the dual-pulse (Fig. 2b). The lateral resolutions of
the visible and NIR lasers are characterized by measuring
a sharp blade, resulting in resolutions of 6.1 μm and
8.9 μm, respectively (Fig. 2c, d). The axial resolution of the
system is estimated to be 37.5 μm (Fig. 2e). The nano-
particle (CuS) is immobilized into an agar phantom to
evaluate the depth imaging capability and the spatial
resolution, where light scattering is dominated by the agar
(See Supplementary Text and Fig. S1–S3). The system
maintained acceptable lateral resolution and signal-to-
noise within a depth of 3.75 mm (Fig. S4). Further, the
penetration depth through the intact skull is measured by
simulating a real environment with a 30-gauge needle
inserted obliquely (~15–30 degrees) into the mouse brain
(Fig. S5), where photon scattering is primarily caused by
the skull and brain parenchyma. The transcranial pene-
tration depths of the visible laser and NIR laser are
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0.75 mm and 1.5 mm, respectively (Fig. 2f). Since the
mLVs locate on the dura mater under the skull, this depth
is sufficient to cover their range for imaging. Finally, the
imaging depth for multiple scattering samples is further
demonstrated by tilting tungsten wires into the agar under
the skull (Fig. S6).
Amphiphilic ICG effortlessly attaches to OVA through

noncovalent interactions, resulting in the formation of

OVA-ICG38. The loading of ICG endows remarkable NIR
absorption to the OVA-ICG (Fig. 2g) and excellent bio-
safety (See Supplementary Text and Fig. S7 and S8). The
mLVs have been reported to drain macromolecules and
immune cells from CSF into cLNs8, and the OVA-ICG
with a diameter of 30 nm fulfills the requirements for such
drainage (Fig. S9). Consequently, specific wavelengths
corresponding to the spectra of hemoglobin and ICG are
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selected for imaging purposes. Considering the high
absorption coefficient of OVA-ICG at approximately
780 nm, images acquired at this wavelength are employed
for evaluating the mLVs (Fig. 2h). The fluence levels of
the 532 nm laser and 780 nm laser used in the system are
7.96 mJ cm-2 and 16.56 mJ cm-2, respectively, which below
the applicable American National Standards Institute
safety limits for laser exposure39.
PA imaging and analysis are performed using different

concentrations of OVA-ICG (Fig. 2i, j, Detailed statistical
information is shown in Table S1). Tracer with a con-
centration of 50 μM are withdrawn at 10 μL and injected
into the cisterna magna (CM) of the mouse, ensuring the
detectability of the tracer in the CSF even after dilution.
Contrast images are obtained using the system, which
provided PA images of hemoglobin and OVA-ICG (Fig.
2k). The signal amplitudes of hemoglobin at 532 nm laser
and 780 nm laser are 0.97 ± 0.03 and 0.006 ± 0.002, while
those of OVA-ICG are 0.007 ± 0.0008 and 0.54 ± 0.05 (Fig.
2l, data are presented as mean ± s.e.m.). Therefore, the
system demonstrated effective differentiation between
hemoglobin and OVA-ICG with high sensitivity. Simul-
taneous imaging of mLVs and CVs is feasible. Moreover,
the laser energy at 780 nm is able to acquire the PA image
of tracer in the presence of a blood background (Fig. S10).
This indicates that DCF-PAM maintains high perfor-
mance even when applied through the skull.

Stereoscopic PA illustrations of mLVs and CVs
The tracer injected into the CM in mice flows into mLVs

and glymphatic pathways, participating in the drainage of
interstitial fluids and CSF. The mLVs play a continuous role
in removing macromolecules, waste products, and excess
fluid from the CNS by connecting with deep cLNs (Fig.
S11). The 3D morphology with a depth of 3.75mm of
mLVs, glymphatic pathways, and cerebral vessels is
obtained using DCF-PAM (Fig. 3a–c, Movie. S1). Using the
assistance of 9.4 T MRI image, the outline of the brain skull,
dura mater, and brain parenchyma are delineated (Fig. 3d).
Then, the reference lines are manually aligned with the PA
tomography images of CVs through the optimal contrast
provided for the structure of the cortical vessels of the brain
(Fig. 3e). The same transformation matrix is then applied to
the PA tomography images of LVs and manual segmenta-
tion is performed (Fig. 3f). Some mLVs segmented in the
PA image exhibit spatial correspondence with in vitro
fluorescence imaging of the meninges (Fig. 3g–i, orange
arrow), confirming the consistency or alignment between
the identified structures or features observed in both ima-
ging modalities. So far, DCF-PAM enables differentiation
between mLVs located on the meninges and glymphatic
pathways situated within the brain parenchyma (Fig. 3j, k),
providing 3D insights into the distinct anatomical locations
of these lymphatic structures.

PA spatial distribution validation of mLVs
Each of the PA and IF images come from the same

mouse, ensuring direct comparison between the two
imaging modalities that are acquired (Fig. 4a–d). Both PA
and IF imaging of mLVs exhibit similar patterns, with
signals primary distributed in the TS and SSS regions. CV
signals are present in both imaging modalities, but they
appear more prominent and brighter in the PA rendering.
In fluorescence imaging, only CV structures on the
meninges are captured, while PA imaging provides a view
of multilayered 3D structures. The merged PA and IF
images show close resemblance (Fig. 4e, f). These merged
images highlight the spatial distribution of PA imaging
more clearly. Specifically, region-specific images (Fig. 4g)
are selected, focusing on the TS and SSS regions. The
ratio of PA modality in TS region and SSS region are
~1.5- and ~2.3-fold higher than those of IF modality,
respectively. This is due to the CVs in the PA modality
exhibiting a signal covering the entire living brain tissue,
which exceeds the signal areas shown in the IF modality,
resulting in a higher ratio (Fig. 4h and Table S2). Analyze
the spatial overlap of mLVs and CVs in the meninges’
same structure and determine the positional relationship
of the two structures in the meninges and possible
interactions. With the co-localized overlap of signals
being slightly lower in the merged PA images (Fig. 4i)
compared to the merged IF images and ~half that of
merged IF images (Fig. 4j and Fig. S12). This suggests that
DCF-PAM provides more detailed information on the
spatial distribution of mLVs and CVs.
Compared with MRI images, PA images can more

clearly reflect the location distribution of mLVs. We
selected 10 consecutive B-scan images near y1, y2, and y3
regions respectively, and performed maximum amplitude
projection in the X-Z cross-sectional direction (Fig. 4l),
and then compared them with the T1-weighted MR
images acquired after injection of Gd (Fig. 4k). The
observed PA signal gain (green arrow) in the brain cortex
region is significantly higher than the observed MRI signal
gain, further highlighting the superior contrast and reso-
lution of mLVs in the PA image. This demonstrates that
DCF-PAM provides a clearer visualization of mLVs,
offering a more detailed and stereoscopic spatial
distribution.

PA insights on drainage and clearance of mLVs
To study the functional characterization of mLVs, PA

images of mLVs and CVs are acquired at different time
points (Fig. 5a and Table S3). The images are taken at
20, 40, 60, 90, and 120 min after injection. The PA data
of mLVs are processed to generate maximum amplitude
projection (MAP) images in the horizontal views at
different time points (Fig. 5b). A noticeable difference is
observed in the overall view of mLVs at different time
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points, with fewer signals detected in later time points
compared to earlier ones. Following tracer injection,
the mean PA intensity significantly increased, showed
high fluctuations at 20 minutes, and then gradually
decreased thereafter (Fig. 5c and Fig. S13), which
indicated the drainage and clearance of mLVs.
The PA images of CVs are minimally affected by the

injection period (Fig. 5d). Putting into the same per-
spective where extracting the mean PA intensity at each
time point observes relatively stable values of CVs (Fig. 5e
and Table S3). Additionally, no significant difference in
cerebral blood flow is observed between different time

points (Fig. S14). The steady flow properties of hemo-
globin emphasize the drainage and clearance character-
istics of the tracer through mLVs.
Further insights into the process are obtained by analyzing

the fluorescence intensity of cLNs (Fig. 5f and Table S3).
Concretely, the fluctuation in cLNs intensity (Fig. 5g) mir-
rored those observed in mLVs of PA images, with a peak
period of cLNs drainage occurring around 20–40min after
CM injection, followed by a decrease. This means that the
tracers are drained from CSF into cLNs through mLVs.
Moreover, our system monitors tracer migration in vivo

over short distances (< 200 μm) and estimates flow
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direction (See Supplementary Text and Fig. S15). It
should be noted that the injected OVA-ICG can exist in
mLVs as both single molecules and OVA-ICG clusters,
contributing to the strong signals observed in the images.

These signals are clearly visualized in transverse sections
(Fig. 5h and Movie. S2). A motion-contrast image is
created from B-scan images with an interval time of 0.8 s
and overlaid on the mLVs image (Fig. 5i). The colors of
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the arc disk represent the flow direction of OVA-ICG,
ranging from –38° to 66°. Detailed movements of the
tracer are visualized, with the flow direction indicated by
orange arrows. The flow direction of the tracer at TS
regions (Fig. 5j) and SSS regions (Fig. 5k) aligned with
previous findings5,22. These results demonstrate that this
system aids in understanding the dynamics of drainage
and clearance through mLVs, providing a pathway for

subsequent research on brain diseases, such as neurode-
generative diseases.

PA insights on mLVs function in Alzheimer’s disease and
young mice
The discovery and characterization of mLVs have promp-

ted an assessment of their role in waste clearance from the
CNS. Adult (5–6 months and 10–12 months) 5xFAD
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transgenic mice in PA modality all exhibit obvious meningeal
lymphatic dysfunction (Fig. 6a–f). The drainage volume of
CVs in AD mice (5xFAD transgenic mice) is comparable to
that in the wild-type (WT) mice at 5–6 months, but the
drainage volume of mLVs at 5–6 months carried an obvious
drainage volume decrease and only ~32% that of WT mice
(SSS: 16.26 ± 1.02 and 50.73 ± 1.56%, respectively; TS/COS:
13.70 ± 2.33 and 60.57 ± 4.71%, respectively) (Fig. 6c and
Table S4). In addition, the drainage volume of CVs in the SSS
regions in AD mice aged 10–12 months is slightly lower than
that in WT mice (43.96 ± 3.31 and 50.05 ± 1.88%, respec-
tively). While the drainage volume of mLVs at 10–12 months
is only ~25% that of WT mice (SSS: 13.76 ± 4.31 and
54.54 ± 4.14%, respectively; TS/COS: 12.41 ± 1.30 and
55.88 ± 4.14%, respectively) (Fig. 6f and Table S5). This
demonstrates the continued decline in mLVs drainage as
Alzheimer’s disease progresses. As a control, we imaged and
analyzed the mLVs and CVs structure of the above mice
using the mLVs marker Lyve-1 in combination with vascular
marker CD31 in vitro (Fig. 6g–j). Imaging of whole-mount
meninges revealed the structural lack of mLVs in AD mice
aged 10–12 months (SSS: 11.26 ± 1.34 and 18.45 ± 1.22%
ROI, respectively; TS/COS: 11.20 ± 1.13 and 13.63 ± 0.99%
ROI, respectively), whereas aged 5–6 months, this loss is not
evident (SSS: 15.91 ± 1.20 and 16.92 ± 0.66% ROI, respec-
tively; TS/COS: 19.72 ± 0.25 and 19.27 ± 0.62% ROI, respec-
tively) (Fig. 6k and Table S6). In contrast, there is a significant
decrease in lymphatic vessel coverage along the SSS, TS, and
the confluence of sinuses (COS) in the PA image of AD mice
aged both 5–6 months and 10–12 months. The functional
impairment of mLVs imaged DCF-PAM is more evident than
in images of fluorescently labeled mLVs from the same mice.
Next, we verified the cLNs kinetic biodistribution of OVA-
ICG administration between WT mice and AD mice. 20-
40minutes after administration of OVA-ICG, the intensities
of OVA-ICG fluorescent signals in cervical regions (Fig. S16)
are still significantly weaker in AD mice than in WT mice.
Interestingly, The PA image of mLVs has fewer drainage
volume aged 10–12 months observed compared to
5–6 months (13.76 ± 4.31 and 16.26 ± 1.02%, respectively).
These results suggested that impaired drainage of mLVs may
be due to Aβ deposition or aging.
It is worth noting that AD mice in IF imaging do not

exhibit an obvious reduced structure of mLVs, but the
deterioration of the lymphatic function at the meninges is
clearly observed in PA imaging in vivo. To verify the
impairment in the mLVs function of AD mice, we
detected the expression of genes relative to lymphatic
vessel structure and function in mLVs of AD mice.
Although the gene transcripts Foxc2, Celsr1, Pkd1, and
Fat4, which lymphatic valve development and recruit-
ment of smooth muscle cells, are not significantly chan-
ged24, mRNA levels of the transcription factors Sema3a,
Egfl7, and Nrp1, which regulate cell polarization and

vascular development, are down-regulated (Fig. 6l and Fig.
S17).
Finally, to explore the cause of mLVs function impair-

ment in AD mice, we hypothesized that the impairment in
the mLVs function may be controlled by Aβ deposition.
Fluorescently labeled Aβ antibodies throughout the
meninges are observed, accompanied by an increase in Aβ
deposition at 10–12 months in AD mice (Fig. 6j).
Therefore, the impairment in the mLVs function may
emerge with Aβ deposition in these mice. Another, adult
mice aged 5–6 months and 10–12 months demonstrate
increased brain perfusion by CSF macromolecules com-
pared to young counterparts aged 1–2 months (Fig. 6m).
Enhanced brain perfusion by CSF in adult mice is
accompanied by an extension in mLVs density (Fig. 6n
and Table S7). The reduced drainage volume of mLVs in
young mice compared to adult mice is likely because of
incomplete development of the meningeal function. Col-
lectively, these results indicate that the mLVs function in
the pathogenesis stage of AD mice has been disrupted, as
well as apparent mLVs are abundant in adult mice com-
pared to young mice. These results indicated that DCF-
PAM images efficiently to mLVs and can serve as a good
application direction for mLVs functional imaging.

Discussion
The strategy that we have described here includes

every step after probe syntheses to final imaging ren-
dering, along with the extract of the various quantita-
tive analyses. DCF-PAM is utilized to achieve wide-field
intravital imaging of mLVs. From the images generated,
we can distinguish between mLVs on the meninges with
glymphatic pathways within the brain parenchyma, and
quantify the influence of CSF drainage and clearance.
The availability of the system should be seen as an
incentive for mLVs imaging of in vivo applications. The
approach can be used to try probes injected into CM
without euthanizing the mouse and dissecting the
meninges. We believe that the approach presented here
could be used whenever a brain disease related to the
mLVs is observed in vivo. To be gratified, we have
successfully characterized the perivascular cere-
brospinal fluid dynamics of the glymphatic pathway
system40. Therefore, it is exhilarating to realize the
high-resolution imaging in vivo of mLVs using DCF-
PAM.
Photoacoustic microscopy is the high-resolution ima-

ging modality that has been achieved for significant
applications in some biomedical fields41–43. In the last
decades, the distinct signatures of the photoacoustic
microscopy enabled the quantification of more compre-
hensive information such as angiogenesis44, oxygen
saturation (sO2)45, oxygen extraction fraction, and cere-
bral blood volume46,47, and also enhanced the ability of
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the hybrid system to recover dense vascular networks48–50

and hemodynamic and morphological variations in both
superficial and deep tissues51–54. Furthermore, various
photoacoustic system has been explored in brain meta-
bolism32,55, brain injury56–59, state connectivity60, and
brain response61,62 by employing different laser illumi-
nation and detection schemes. These technologies have
been achieved in the study of in vivo high-resolution
imaging of the brain, whereas they almost concentrate on
CVs rather than mLVs. Of course, the imaging of mLVs
should also be studied. Partial studies have been made in
some pure-optical ways, IF way, as well as MRI way, but it
is hard to visualize the structure and function of mLVs
with high resolution in vivo. DCF-PAM allows simulta-
neous visualization of CVs and mLVs with high resolution
in vivo. Vascular organizations are spread throughout the
whole view due to the significant signal of hemoglobin,
and mLVs are typically characterized by concentrated
near the TS and SSS. The images of CVs and mLVs fea-
ture different experimental characteristics, reflecting the
differences in their organizations. We hope that with the
system provided in this paper, accurate characterization of
CVs and mLVs in vivo will be feasible. DCF-PAM enables
stereoscopic images of CVs and mLVs in vivo. Through
the self-developed hollow ultrasound transducer63,64 and
light-acoustic confocal system design, the obtained ste-
reoscopic images can maintain a good signal-to-noise
ratio and resolution within a depth range of 3.75 mm.
Using mLVs images analyzed, we notice that the probes

are especially important in the imaging process of mLVs.
The OVA-ICG as a tracer used is a macromolecule in its
form. This means that probes come from CSF by drainage
and clearance, and not enough covered entire mLVs to
perform a detailed visualization of mLVs. All illuminated
signal points tend to only show the trajectories of the
probe in all mLVs. As such, labeled probes should be used
to label the entire network of mLVs in the future. One can
note that, even though the mouse needs to euthanize in
the IF imaging, the conjugates of antibody and fluorescent
dye are performed as labeled probes, and that should be
taken into account when synthesizing PA probes. If
labeled PA probes will be synthesized and injected into
CM, the final reconstructed images may reveal
entire mLVs.
For the DCF-PAM, the device based on the two-

dimension motorized translation stage has a wide-view
scanning range. This makes the image obtained to cover
the whole brain of a mouse. In vivo, wide-view monitoring
seems to include more structured information about the
sample, whereas CVs and mLVs have many real-time
features of flow behavior. The duration of one PA imaging
in the brain of DCF-PAM does not allow the real-time
representation of CVs and mLVs as it needs long acqui-
sition times. The scanning speed is critical to the real-time

recording of a series of dynamic changes. If the system in
the strategy is able to use some high-speed scanning
device, such as a 2-axis fast galvanometer scanner, pro-
viding high-frame-rate scanned images and realizing real-
time whole-brain recording results will be possible. Our
previous study has a dual-raster-scanned PA microscope
that integrates a two-dimensional motorized translation
stage for large field-of-view imaging and a 2-axis fast
galvanometer scanner for real-time imaging65. In the
future, we will have chosen this system to update the dual-
wavelength system. The idea appears much better than
those of many other methods. It will improve the
applicability of the strategy by allowing wide-view mon-
itoring and real-time recording.
In summary, we have proposed an approach for high-

resolution image CVs and mLVs in vivo using DCF-PAM.
When the advent of relative brain diseases or injury, the
system devised may also help to compare and characterize
such diagnoses and treatment of diseases. The use of the
system is seen potential to increase new imaging tech-
nology and method and realize better and faster in vivo
imaging of CVs and mLVs. It will facilitate brain study
that relevant aspects of the nervous system and immune
system by researchers, and allow them to take advantage
of the existing condition and develop new application
directions.

Materials and methods
Animal subjects
Young (1–2 months old) and adult (5–6 months,

10–12 months old) male C57BL/6 J WT mice are pur-
chased from Guangdong Medical Laboratory Animal
Center. The transgenic mice (5xFAD) are provided by
Sun Yat-sen Memorial Hospital, Sun Yat-sen Uni-
versity. All experimental mice are of a C57BL/6 back-
ground, and WT and AD mice are paired from the
litters and housed under the same living conditions. In-
housed bred male transgene carriers and non-carrier
(WT) littermates are used at different ages. Mice are
housed in a temperature and humidity-controlled
room, maintained in a 12 h/12 h light/dark cycle. All
mice are fed with regular rodent chow and sterilized tap
water ad libitum. All animal studies were reviewed and
approved by the Institutional Animal Care and Use
Committee of Hainan University (approval number:
HNUAUCC-2021-00112).

Cisterna magna Injection
Mice are anaesthetized by inhaling 2% isoflurane air. The

hair of the neck is shaved and cleaned with iodine and 70%
ethanol, an ophthalmic solution is placed on the eyes to
prevent drying, and the head of the mouse is secured in a
stereotaxic frame. After making a skin incision, the muscle
layers are retracted, and the CM is exposed. Using a
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Hamilton syringe (coupled to a 30-gauge needle), the
volume of desired tracer solution is injected into the CSF-
filled cisterna magna compartment at a rate of about 2.5 μl
per minute66. After injecting, the syringe is left in place for
at least 2 min to prevent backflow of CSF. The neck skin is
then sutured. The method of intra-cisterna magna injec-
tion is used to administer 10 μl of OVA-ICG. The tracers
are imaged at the indicated time points and analyzed.

Photoacoustic Imaging
For PA imaging of the mouse brain, the hair of the

normal mouse is first removed using a shaver and depi-
latory cream. Then, the mouse is removed scalp. The skull
is kept intact. Imaging is performed with the scanning
range of 12 × 12 × 3.75 mm3, and fast-axis scanning speed
of 10 mm s–1, and the scanning time is about 12min.
During scanning, to avoid motion artifacts in living mice,
firstly, the degree of anesthesia of the mice is controlled
through gas anesthesia, and analgesia and central muscle
relaxation medication are administered to reduce the
impact of breathing. Secondly, during the process of
acquiring images, the bandpass filter is used to smooth
the PA signal, and median filtering is performed on every
4 A-line data to eliminate the noise. Finally, after
acquiring the 3D PA data, the motion correction algo-
rithm and bilinear interpolation are applied to further
reduce motion artifacts in the image67.
In the phantom experiments, the 30-gauge needle is

inserted into the mouse brain in vitro. To measure the
penetration depths, 2500 B-scan images are acquired, and
each B-scan image contained 500 A-lines. To evaluate the
lateral resolution, the edge spread function as well as the
corresponding line spread function are calculated per-
pendicular to the blade edge. To evaluate the axial reso-
lution, the acquired A-line signals are performed Hilbert
transformation and measured the full-width-at-half-
maximum. 2500 B-scans to cover the FOV are acquired as
a set of coronal views, and MAP to each B-scan image is
carried out so that there were 2500× 1000 pixels in total in
one image of the horizontal view. In sequential imaging
experiments, PA images are continuously acquired for
approximately 2 hours post-injection.

MRI acquisitions
All MRI acquisitions are performed in a 9.4 T BioSPEC

system (Bruker, Germany). The mouse is placed in the
MRI apparatus and maintained under light anesthesia
with isoflurane (1–1.25% in oxygen). Before and after
injecting DTPA-Gd into the CSF, a series of post-contrast
T1-weighted images are taken through the head with
the following parameters: TR= 500 ms, TE= 6 ms,
FOV= 20× 20 mm2, slice thickness = 0.7 mm, number of
slices = 17 and NEX= 2. The total acquisition time is
about 147 s.

Immunohistochemistry and Imaging
Mice are euthanized by intraperitoneal (i.p.) injection

with an overdose of anesthesia (20 mg kg–1 pento-
barbital sodium) and transcardially perfused with PBS.
The skin is removed from the head and the muscle is
stripped from the bone. Then, the mandibles and skull
rostral to maxillae are removed. Whole-mount skullcap
is fixed while still attached to the skull cap in 4% par-
aformaldehyde for 12 h at room temperature. The
meninges are then dissected from the skullcap. The
tissue is rinsed in PBS and 0.5% Triton X-100 con-
taining 5% bovine serum albumin for 1 h at room
temperature. This blocking step is followed by incu-
bation with appropriate dilutions of primary anti-
bodies: anti-LYVE-1-Alexa Fluor 488 (eBioscience,
1:200), anti-CD31 (Millipore, MAB1398Z, 1:200) in
PBS, and 0.5% Triton X-100 overnight at 4 °C.
Meningeal whole-mounts are then washed three times
for 10 min at room temperature in PBS and 0.5% Triton
X-100 followed by incubation with appropriate Alexa
Fluor 555 (Thermo Fisher Scientific, 1:400) in PBS and
0.5% Triton X-100 overnight at 4°C. Alternatively,
incubate overnight at 4°C with the appropriate Anti-
β-amyloid, 1-16 Antibody (Biolegend, 1:400), Alexa
Fluor 647 (Thermo Fisher Scientific, 1:400). After
incubating, the tissue is washed three times for 10 min
with PBS and 0.5% Triton X-100 at room temperature
and mounted with an IF sealing agent and glass cov-
erslips68. Preparations are stored at 4°C for no more
than one week until images are acquired using a con-
focal microscope (LSM 880 Confocal Laser Scanning
Microscope, Zeiss).

Laser speckle
Mice are anesthetized by isoflurane. An incision is done

along the midline to separate the skin of the skull and
laser speckle is used to detect mice’s cerebral blood flow.
Laser speckle blood flow images are recorded and used to
identify the regions of interest. Within these regions, the
mean blood flow index is calculated in real time.

Quantitative real-time PCR
Relative mRNA expression levels of target genes are

measured by qPCR. Total RNA is extracted from cells or
tissues with RNAiso Plus (TaKaRa, D9108A) following the
manufacturer’s instructions, and cDNA is generated using
a ReverTra Ace qPCR (Quantitative Real-time PCR) RT
Kit (TOYOBO, FSQ-301). Real-time PCR is performed
using SYBR Green PCR mix on a CFX ConnectTM Real-
Time System normalized against GAPDH. The 2-ΔΔCt

method is used to calculate relative gene expression levels.
Gapdh is amplified as an internal control. Sequences of all
primers for amplification of genes used in experiments are
listed in Table S8.
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Statistical analysis
After acquiring and storing the origin PA data, the median

filtering algorithm and wavelet filtering algorithm are
implemented based on a user-defined program for LabVIEW
software. For each PA matrix, the various planes of the PA
matrix are extracted. The horizontal plane and coronal plane
of PA images are obtained. By applying for interpolated
algorithm and reconstruction program, it is able to compute
the MAP and depth-encoded by processing them through
MATLAB program. The 3D image could be generated by
arranging each matrix according to the time vector.
The MR images and the IF images are rendered with the

software tool, RadiAnt, and ZEN, respectively. The merged
images combing all the point-to-point positions of each pixel
in a maximum-intensity projection fashion are fused using
the software ImageJ, containing PA/PA image and IF/IF
image. The ratio between the CVs signal area and the mLVs
signal area is accessed to compare image features based on
the different imaging methods. The mean PA intensity is
calculated to reflect the condition of drainage and clearance.
The mean PA intensity of a specific region is calculated, and
the total value of the target region divided by the area of the
target area can represent the average amount of tracer in the
target region.
We estimated the local motion vectors from the con-

secutive frame and plotted their direction with color.
According to the previous study, our system would cap-
ture the direction of lymph flow because the B-scan
scanning velocity is less than the lymph velocity69–72. The
mLVs that contained flowing tracers are first manually
identified from the consecutive B-scan images. Run traces
at points along these signals are then extracted. After
thresholding the set of maximum amplitude, the images
are fitted to estimate a flow direction.
Statistical analysis is conducted in SPSS software and

GraphPad Prism 8. Data are expressed as the mean ±
SEM. Significant differences are compared as noted in
figure legends, using Student’s t test for statistical analysis
in two-group comparison, and the differences are con-
sidered statistically significant at p < 0.05. Specific statis-
tical parameters are detailed in the figure legends.
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