Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation

Abstract

Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: circFAM193B is downregulated in LSCs and characteristics of circFAM193B in AML cells.
Fig. 2: circFAM193B reduces the self-renewal, maintenance and chemo-resistance of LSCs.
Fig. 3: circFAM193B sensitizes AML cells to chemotherapy in vitro and in vivo.
Fig. 4: Knockdown of circFAM193B enhances metabolic reprogramming and protects AML cells from oxidative stress-induced cell death.
Fig. 5: circFAM193B suppresses AML by physically interacting with PRMT6 and inhibits the level of H3R2me2a.
Fig. 6: PRMT6 suppresses ALOX15 expression by catalyzing H3R2me2a modification and regulates AML stem cells by modulating lipid peroxidation.
Fig. 7: circFAM193B regulats AML via modulating energy metabolism and the redox balance.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J. 2016;6:e441.

    PubMed  PubMed Central  Google Scholar 

  2. Larrue C, Guiraud N, Mouchel P-L, Dubois M, Farge T, Gotanègre M, et al. Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells. Nat Commun. 2021;12:422.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res. 2005;11:6520–7.

    PubMed  Google Scholar 

  4. Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell. 2018;71:428–42.

    CAS  PubMed  Google Scholar 

  5. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood. 2019;134:1533–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Liu X, Cai M, Luo A, He Y, Liu S, et al. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer. 2021;20:139.

    PubMed  PubMed Central  Google Scholar 

  8. Li W, Zhong C, Jiao J, Li P, Cui B, Ji C, et al. Characterization of hsa_circ_0004277 as a New Biomarker for Acute Myeloid Leukemia via Circular RNA Profile and Bioinformatics Analysis. Int J Mol Sci. 2017;18:597.

    PubMed  PubMed Central  Google Scholar 

  9. Han F, Zhong C, Li W, Wang R, Zhang C, Yang X, et al. hsa_circ_0001947 suppresses acute myeloid leukemia progression via targeting hsa-miR-329-5p/CREBRF axis. Epigenomics. 2020;12:935–53.

    CAS  PubMed  Google Scholar 

  10. Yang X, Han F, Hu X, Li G, Wu H, Can C, et al. EIF4A3-induced Circ_0001187 facilitates AML suppression through promoting ubiquitin-proteasomal degradation of METTL3 and decreasing m6A modification level mediated by miR-499a-5p/RNF113A pathway. Biomarker Res. 2023;11:59.

    Google Scholar 

  11. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, et al. MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell. 2011;20:66–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6:8489.

    CAS  PubMed  Google Scholar 

  13. He X, Zhu Y, Lin Y-C, Li M, Du J, Dong H, et al. PRMT1-mediated FLT3 arginine methylation promotes maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2019;134:548–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M, et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia. 2015;30:789–99.

    PubMed  PubMed Central  Google Scholar 

  15. Cheng Y, Gao Z, Zhang T, Wang Y, Xie X, Han G, et al. Decoding m(6)A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance. Cell Stem Cell. 2023;30:69–85.e7.

    CAS  PubMed  Google Scholar 

  16. Siriboonpiputtana T, Zeisig BB, Zarowiecki M, Fung TK, Mallardo M, Tsai CT, et al. Transcriptional memory of cells of origin overrides β-catenin requirement of MLL cancer stem cells. EMBO J. 2017;36:3139–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, et al. The Emerging Role of PRMT6 in Cancer. Front Oncol. 2022;12:841381.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang T, Yang Y, Song X, Wan X, Wu B, Sastry N, et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell. 2021;81:1276–91.e9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Xiao Z, Li P, Wu C, Li Y, Wang Q, et al. PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Oncogene. 2023;42:1088–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Che N, Ng KY, Wong TL, Tong M, Kau PW, Chan LH, et al. PRMT6 deficiency induces autophagy in hostile microenvironments of hepatocellular carcinoma tumors by regulating BAG5-associated HSC70 stability. Cancer Lett. 2021;501:247–62.

    CAS  PubMed  Google Scholar 

  21. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell. 2018;22:191–205.e9.

    CAS  PubMed  Google Scholar 

  22. She M, Niu X, Chen X, Li J, Zhou M, He Y, et al. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett. 2012;318:173–9.

    CAS  PubMed  Google Scholar 

  23. Jang JE, Eom JI, Jeung HK, Chung H, Kim YR, Kim JS, et al. PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J Exp Clin Cancer Res. 2020;39:66.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304:2706–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellicano F, Park L, Hopcroft LEM, Shah MM, Jackson L, Holyoake TL, et al. hsa-mir183/EGR1-mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood. 2018;131:1532–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017;7:716–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell. 2013;12:329–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022;56:102452.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sébert M, Passet M, Raimbault A, Rahmé R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4.

    PubMed  Google Scholar 

  30. Huang Y, Yu S-H, Zhen W-X, Cheng T, Wang D, Lin J-B, et al. Tanshinone I, a new EZH2 inhibitor restricts normal and malignant hematopoiesis through upregulation of MMP9 and ABCG2. Theranostics. 2021;11:6891–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen S-J, Bao L, Keefer K, Shanmughapriya S, Chen L, Lee J, et al. Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death Dis. 2020;11:247.

    PubMed  PubMed Central  Google Scholar 

  32. Reikvam H, Hatfield KJ, Øyan AM, Kalland KH, Kittang AO, Bruserud Ø. Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation. Eur J Haematol. 2010;84:239–51.

    CAS  PubMed  Google Scholar 

  33. Kim S, Kim NH, Park JE, Hwang JW, Myung N, Hwang K-T, et al. PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nat Commun. 2020;11:612.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai W, Liu L, Shi X, Liu Y, Wang J, Fang X, et al. Alox15/15-HpETE Aggravates Myocardial Ischemia-Reperfusion Injury by Promoting Cardiomyocyte Ferroptosis. Circulation. 2023;147:1444–60.

    CAS  PubMed  Google Scholar 

  35. Ma X-H, Liu J-H-Z, Liu C-Y, Sun W-Y, Duan W-J, Wang G, et al. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Targeted Therapy. 2022;7:288.

    CAS  Google Scholar 

  36. Han L, Dong L, Leung K, Zhao Z, Li Y, Gao L, et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell. 2023;30:52–68.e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Bi K, Feng S, Wang Y, Zhu C. CircRNA circ_POLA2 is Upregulated in Acute Myeloid Leukemia (AML) and Promotes Cell Proliferation by Suppressing the Production of Mature miR-34a. Cancer Manag Res. 2021;13:3629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu X, Yang X-Y, Ma D-X. Emerging functions and roles of circRNAs in cancer. Epigenomics. 2022;14:113–6.

    CAS  PubMed  Google Scholar 

  39. de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2021;36:1–12.

    PubMed  PubMed Central  Google Scholar 

  40. Amaya ML, Inguva A, Pei S, Jones C, Krug A, Ye H, et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 2022;139:584–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Herglotz J, Kuvardina ON, Kolodziej S, Kumar A, Hussong H, Grez M, et al. Histone arginine methylation keeps RUNX1 target genes in an intermediate state. Oncogene. 2012;32:2565–75.

    PubMed  Google Scholar 

  42. Lee J, You JH, Roh J-L. Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biol. 2022;51:102276.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all participating patients, without whom continuous improvement in clinical care and growing scientific insights would not be possible. The authors acknowledge all contributing physicians, study nurses, and laboratories for their support in the trials.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 32241005, 82370173) and Natural Science Foundation of Shandong Province (Youth Program, ZR2023QH249).

Author information

Authors and Affiliations

Authors

Contributions

Professor DXM designed and funded the study. XYY performed this research. JTL, WCL, HYW and CC assisted with this research. YHW, XHJ and XDG analyzed the data. XH, DMW revised the manuscript accordingly. XYY wrote the manuscript.

Corresponding author

Correspondence to Daoxin Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The trials were approved by the respective ethics committees and were conducted in accordance with the Declaration of Helsinki. All patients provided written informed consent, including the analysis of data. The studies were continuously monitored using clinical and medical monitoring.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, J., Liu, W. et al. circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation. Leukemia 38, 1057–1071 (2024). https://doi.org/10.1038/s41375-024-02189-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02189-8

Search

Quick links