Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MULTIPLE MYELOMA, GAMMOPATHIES

CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1

Abstract

Targeting nucleotide biosynthesis is a proven strategy for the treatment of cancer but is limited by toxicity, reflecting the fundamental nucleotide requirement of dividing cells. The rate limiting step in de novo pyrimidine synthesis is of interest, being catalyzed by two homologous enzymes, CTP synthase 1 (CTPS1) and CTPS2, that could be differentially targeted. Herein, analyses of publicly available datasets identified an essential role for CTPS1 in multiple myeloma (MM), linking high expression of CTPS1 (but not CTPS2) with advanced disease and poor outcomes. In cellular experiments, CTPS1 knockout induced apoptosis of MM cell lines. Exposure of MM cells to STP-B, a novel and highly selective pharmacological inhibitor of CTPS1, inhibited proliferation, induced S phase arrest and led to cell death by apoptosis. Mechanistically, CTPS1 inhibition by STP-B activated DNA damage response (DDR) pathways and induced double-strand DNA breaks which accumulated in early S phase. Combination of STP-B with pharmacological inhibitors of key components of the DDR pathway (ATR, CHEK1 or WEE1) resulted in synergistic growth inhibition and early apoptosis. Taken together, these findings identify CTPS1 as a promising new target in MM, either alone or in combination with DDR pathway inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High CTPS1 expression is associated with disease progression and poor overall survival.
Fig. 2: MM cell lines depend on CTPS1 for proliferation.
Fig. 3: Selective CTPS1 inhibition by STP-B selectively impairs MM cell line viability and induces apoptosis.
Fig. 4: Selective CTPS1 inhibition by STP-B induces S phase cell cycle arrest and DNA damage.
Fig. 5: STP-B induces S phase cell cycle delay, replication stress and DNA damage in cells resistant to early inhibition of proliferation.
Fig. 6: STP-B synergizes with inhibitors of the DNA damage response (DDR) pathway.

Similar content being viewed by others

Data availability

The data analyzed in this study was obtained from Gene Expression Omnibus (GEO) at GSE9782, GSE2658, GSE6477, GSE19784 and GSE13591.

References

  1. Szalat R, Munshi NC. Novel Agents in Multiple Myeloma. Cancer J. 2019;25:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zanwar S, Kumar S. Disease heterogeneity, prognostication and the role of targeted therapy in multiple myeloma. Leuk Lymphoma. 2021;62:3087–97.

    Article  CAS  PubMed  Google Scholar 

  3. Pawlyn C, Davies FE. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood. 2019;133:660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinhold N, Heuck CJ, Rosenthal A, Thanendrarajan S, Stein CK, Van Rhee F, et al. Clinical value of molecular subtyping multiple myeloma using gene expression profiling. Leukemia. 2016;30:423–30.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26:149–57.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H, et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia. 2017;31:2443.

    Article  CAS  PubMed  Google Scholar 

  7. Moore M, Maroun J, Robert F, Natale R, Neidhart J, Dallaire B, et al. Multicenter phase II study of brequinar sodium in patients with advanced gastrointestinal cancer. Invest New Drugs. 1993;11:61–65.

    Article  CAS  PubMed  Google Scholar 

  8. Urba S, Doroshow J, Cripps C, Robert F, Velez-Garcia E, Dallaire B, et al. Multicenter phase II trial of brequinar sodium in patients with advanced squamous-cell carcinoma of the head and neck. Cancer Chemother Pharmacol. 1992;31:167–9.

    Article  CAS  PubMed  Google Scholar 

  9. Dodion PF, Wagener T, Stoter G, Drozd A, Lev LM, Skovsgaard T, et al. Phase II trial with Brequinar (DUP-785, NSC 368390) in patients with metastatic colorectal cancer: a study of the Early Clinical Trials Group of the EORTC. Ann Oncol Off J Eur Soc Med Oncol. 1990;1:79–80.

    Article  CAS  Google Scholar 

  10. Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, et al. DHODH and cancer: promising prospects to be explored. Cancer Metab. 2021;9:22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279:33035–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lieberman I. Enzymatic amination of uridine triphosphate to cytidine triphosphate. J Biol Chem. 1956;222:765–75.

    Article  CAS  PubMed  Google Scholar 

  13. Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510:288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin E, Minet N, Boschat A-C, Sanquer S, Sobrino S, Lenoir C, et al. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI insight. 2020;5:e133880.

  15. Lynch EM, DiMattia MA, Albanese S, van Zundert GCP, Hansen JM, Quispe JD, et al. Structural basis for isoform-specific inhibition of human CTPS1. Proc Natl Acad Sci. 2021;118:e2107968118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asnagli H, Minet N, Pfeiffer C, Hoeben E, Lane R, Laughton D, et al. CTP Synthase 1 Is a Novel Therapeutic Target in Lymphoma. HemaSphere. 2023;7:e864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using ‘optimal’ cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86:829–35.

    Article  CAS  PubMed  Google Scholar 

  18. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer Dependency Map. Cell. 2017;170:564–576.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dempster JM, Boyle I, Vazquez F, Root DE, Boehm JS, Hahn WC, et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 2021;22:343.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer. 2009;48:603–14.

    Article  CAS  PubMed  Google Scholar 

  21. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67:2982–9.

    Article  CAS  PubMed  Google Scholar 

  22. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543–53.

    Article  CAS  PubMed  Google Scholar 

  23. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanamura I, Huang Y, Zhan F, Barlogie B, Shaughnessy J. Prognostic value of Cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia. 2006;20:1288–90.

    Article  CAS  PubMed  Google Scholar 

  25. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood. 2007;109:3177–88.

    Article  CAS  PubMed  Google Scholar 

  26. Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem. 1994;140:1–22.

    Article  CAS  PubMed  Google Scholar 

  27. Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263:160–72.

    Article  PubMed  Google Scholar 

  28. Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63.

    Article  CAS  PubMed  Google Scholar 

  29. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74–88.

    Article  CAS  PubMed  Google Scholar 

  30. Huang H, Wang Y, Wang W, Wei X, Gale RP, Li J, et al. A prognostic survival model based on metabolism-related gene expression in plasma cell myeloma. Leukemia. 2021;35:3212–22.

    Article  CAS  PubMed  Google Scholar 

  31. Ajazi A, Choudhary R, Tronci L, Bachi A, Bruhn C. CTP sensing and Mec1ATR-Rad53CHK1/CHK2 mediate a two-layered response to inhibition of glutamine metabolism. PLoS Genet. 2022;18:e1010101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Z, Zhang Z, Wang Q-Q, Liu J-L. Combined Inactivation of CTPS1 and ATR Is Synthetically Lethal to MYC-Overexpressing Cancer Cells. Cancer Res. 2022;82:1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walters DK, Wu X, Tschumper RC, Arendt BK, Huddleston PM, Henderson KJ, et al. Evidence for ongoing DNA damage in multiple myeloma cells as revealed by constitutive phosphorylation of H2AX. Leukemia. 2011;25:1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014;20:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cottini F, Hideshima T, Suzuki R, Tai Y-T, Bianchini G, Richardson PG, et al. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015;5:972–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herrero AB, Gutiérrez NC. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival. Front Oncol. 2017;7:98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Botrugno OA, Bianchessi S, Zambroni D, Frenquelli M, Belloni D, Bongiovanni L, et al. ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies. Haematologica. 2020;105:2440–7.

    Article  PubMed  Google Scholar 

  38. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32:71–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Conte F, Sibilio P, Grimaldi AM, Salvatore M, Paci P, Incoronato M. In silico recognition of a prognostic signature in basal-like breast cancer patients. PLoS One. 2022;17:e0264024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin Y, Zhang J, Li Y, Guo W, Chen L, Chen M, et al. CTPS1 promotes malignant progression of triple-negative breast cancer with transcriptional activation by YBX1. J Transl Med. 2022;20:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minet N, Boschat A-C, Lane R, Laughton D, Beer P, Asnagli H, et al. Differential roles of CTP synthetases CTPS1 and CTPS2 in cell proliferation. Life Sci Alliance. 2023;6:e202302066.

Download references

Acknowledgements

The authors would like to thank Waltraud Scherbler and Pia Fritz (employees at Klinik Ottakring, Vienna, Austria), for their excellent technical support. This study was supported by the Austrian Forum against Cancer, the Österreichische Forschungsförderungsgesellschaft mbH (FFG, “Forschungspartnerschaften”), project number 878861 and a research grant from the Ingrid Shaker Nessmann (ISNK) Cancer Research Association given to AB; AS is a recipient of the DOC fellowship of the Austrian Academy of Science at the Wilhelminen Cancer Research Institute. In vivo studies conducted at Crown Bioscience were financed by Step Pharma.

Author information

Authors and Affiliations

Authors

Contributions

CP, AB, PAB and HL designed the study; CP performed the experiments, analyzed and interpreted data; AMG performed bioinformatics analysis of publicly available gene expression datasets; AB, AS, AMG, AEP, HA, JH, and PAB analyzed and interpreted data; NZ and MS interpreted data; CP and PAB. wrote the manuscript; HL provided funding, designed the study and supervised the research; all authors revised and approved the final version of the manuscript.

Corresponding authors

Correspondence to Philip A. Beer or Heinz Ludwig.

Ethics declarations

Competing interests

Philip A. Beer, Hélène Asnagli and Andrew E. Parker are employees of Step Pharma SAS. All other authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, C., Grandits, A.M., Asnagli, H. et al. CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1. Leukemia 38, 181–192 (2024). https://doi.org/10.1038/s41375-023-02071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02071-z

This article is cited by

Search

Quick links