Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

Recent BCR stimulation induces a negative autoregulatory loop via FBXO10 mediated degradation of HGAL

Abstract

Regulating B-cell receptor (BCR) signaling after antigenic stimulation is essential to properly control immune responses. Currently known mechanisms of inhibiting BCR signaling are via co-receptor stimulation and downstream immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation. Herein we demonstrate that BCR stimulation induces rapid and reversible palmitoylation of the SCF-FBXO10 ubiquitin E3 ligase. This results in FBXO10 relocation to the cell membrane, where it targets the human germinal center-associated lymphoma (HGAL) protein for ubiquitylation and degradation, leading to decreases in both BCR-induced calcium influx and phosphorylation of proximal BCR effectors. Importantly, FBXO10 recognition and degradation of HGAL is phosphorylation independent and instead relies on a single evolutionarily conserved HGAL amino acid residue (H91) and FBXO10 relocalization to the cytoplasmic membrane. Together our findings demonstrate the first evidence of negative BCR signaling regulation from direct BCR stimulation and define the temporospatial functions of the FBXO10-HGAL axis. FBXO10 is infrequently mutated in DLBCL but some of these mutations deregulate BCR signaling. These observations may have important implications on lymphomagenesis and other immune processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rickert RC. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol. 2013;13:578–91.

    Article  CAS  Google Scholar 

  2. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  CAS  Google Scholar 

  3. Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Rep. 2013;5:40.

    Article  Google Scholar 

  4. Kurosaki T. Regulation of BCR signaling. Mol Immunol. 2011;48:1287–91.

    Article  CAS  Google Scholar 

  5. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2:945–56.

    Article  CAS  Google Scholar 

  6. Nitschke L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol. 2005;17:290–7.

    Article  CAS  Google Scholar 

  7. Fujimoto M, Bradney AP, Poe JC, Steeber DA, Tedder TF. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity. 1999;11:191–200.

    Article  CAS  Google Scholar 

  8. Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol. 2000;164:1223–9.

    Article  CAS  Google Scholar 

  9. Blery M, Kubagawa H, Chen CC, Vely F, Cooper MD, Vivier E. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA. 1998;95:2446–51.

    Article  CAS  Google Scholar 

  10. Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature. 1994;369:340.

    Article  CAS  Google Scholar 

  11. Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell. 1997;90:293–301.

    Article  CAS  Google Scholar 

  12. Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science. 2012;336:1178–81.

    Article  CAS  Google Scholar 

  13. Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol. 2015;11:810.

    Article  Google Scholar 

  14. Zhang M, Veselits M, O’Neill S, Hou P, Reddi AL, Berlin I, et al. Ubiquitinylation of Ig beta dictates the endocytic fate of the B cell antigen receptor. J Immunol. 2007;179:4435–43.

    Article  CAS  Google Scholar 

  15. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5:739–51.

    Article  CAS  Google Scholar 

  16. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14:369–81.

    Article  CAS  Google Scholar 

  17. Lossos IS, Alizadeh AA, Rajapaksa R, Tibshirani R, Levy R. HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma. Blood. 2003;101:433–40.

    Article  CAS  Google Scholar 

  18. Lu X, Chen J, Malumbres R, Cubedo Gil E, Helfman DM, Lossos IS. HGAL, a lymphoma prognostic biomarker, interacts with the cytoskeleton and mediates the effects of IL-6 on cell migration. Blood. 2007;110:4268–77.

    Article  CAS  Google Scholar 

  19. Lu X, Sicard R, Jiang X, Stockus JN, McNamara G, Abdulreda M, et al. HGAL localization to cell membrane regulates B-cell receptor signaling. Blood. 2015;125:649–57.

    Article  CAS  Google Scholar 

  20. Jiang X, Lu X, McNamara G, Liu X, Cubedo E, Sarosiek KA, et al. HGAL, a germinal center specific protein, decreases lymphoma cell motility by modulation of the RhoA signaling pathway. Blood. 2010;116:5217–27.

    Article  CAS  Google Scholar 

  21. Romero-Camarero I, Jiang X, Natkunam Y, Lu X, Vicente-Duenas C, Gonzalez-Herrero I, et al. Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation. Nat Commun. 2013;4:1338.

    Article  Google Scholar 

  22. Natkunam Y, Hsi ED, Aoun P, Zhao S, Elson P, Pohlman B, et al. Expression of the human germinal center-associated lymphoma (HGAL) protein identifies a subset of classic Hodgkin lymphoma of germinal center derivation and improved survival. Blood. 2007;109:298–305.

    Article  CAS  Google Scholar 

  23. Azambuja D, Lossos IS, Biasoli I, Morais JC, Britto L, Scheliga A, et al. Human germinal center-associated lymphoma protein expression is associated with improved failure-free survival in Brazilian patients with classical Hodgkin lymphoma. Leuk Lymphoma. 2009;50:1830–6.

    Article  CAS  Google Scholar 

  24. Green TM, Jensen AK, Holst R, Falgreen S, Bogsted M, de Stricker K, et al. Multiplex polymerase chain reaction-based prognostic models in diffuse large B-cell lymphoma patients treated with R-CHOP. Br J Haematol. 2016;174:876–86.

    Article  CAS  Google Scholar 

  25. Natkunam Y, Lossos IS, Taidi B, Zhao S, Lu X, Ding F, et al. Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation. Blood. 2005;105:3979–86.

    Article  CAS  Google Scholar 

  26. Chiorazzi M, Rui L, Yang Y, Ceribelli M, Tishbi N, Maurer CW, et al. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma. Proc Natl Acad Sci USA. 2013;110:3943–8.

    Article  CAS  Google Scholar 

  27. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature. 2012;481:90–93.

    Article  CAS  Google Scholar 

  28. Qu C, Liu Y, Kunkalla K, Singh RR, Blonska M, Lin X, et al. Trimeric G protein-CARMA1 axis links smoothened, the hedgehog receptor transducer, to NF-kappaB activation in diffuse large B-cell lymphoma. Blood. 2013;121:4718–28.

    Article  CAS  Google Scholar 

  29. Kim JE, Singh RR, Cho-Vega JH, Drakos E, Davuluri Y, Khokhar FA, et al. Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod Pathol. 2009;22:1312–20.

    Article  CAS  Google Scholar 

  30. Brigidi GS, Bamji SX. Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J Vis Exp. 2013. pii: 50031. https://doi.org/10.3791/50031.

  31. Brigidi GS, Sun Y, Beccano-Kelly D, Pitman K, Mobasser M, Borgland SL, et al. Palmitoylation of delta-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci. 2014;17:522–32.

    Article  CAS  Google Scholar 

  32. Resh MD. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994;76:411–3.

    Article  CAS  Google Scholar 

  33. Linder ME, Deschenes RJ. New insights into the mechanisms of protein palmitoylation. Biochemistry. 2003;42:4311–20.

    Article  CAS  Google Scholar 

  34. Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ, et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res. 2009;50:233–42.

    Article  CAS  Google Scholar 

  35. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171:481–94 e415.

    Article  CAS  Google Scholar 

  36. Wiestner A. Targeting B-Cell receptor signaling for anticancer therapy: the Bruton’s tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies. J Clin Oncol. 2013;31:128–30.

    Article  CAS  Google Scholar 

  37. Akimzhanov AM, Boehning D. Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling. Proc Natl Acad Sci USA. 2015;112:11876–80.

    Article  CAS  Google Scholar 

  38. Cherukuri A, Carter RH, Brooks S, Bornmann W, Finn R, Dowd CS, et al. B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem. 2004;279:31973–82.

    Article  CAS  Google Scholar 

  39. Baecklund E, Natkunam Y, Backlin C, Iliadou A, Askling J, Ekbom A, et al. Expression of the human germinal-centre-associated lymphoma protein in diffuse large B-cell lymphomas in patients with rheumatoid arthritis. Br J Haematol. 2008;141:69–72.

    Article  Google Scholar 

Download references

Acknowledgements

XJ is supported by Stanley J. Glaser Foundation Research Award (UM SJG 2017–8), American Cancer Society Institutional Research Grant (#98–277–13), and the University of Miami Sylvester Comprehensive Cancer Center. VTM was supported by BioNIUM Pilot Project Award. ISL is supported by the American Society of Hematology Bridge grant, the Dwoskin, Recio and Anthony Rizzo Families Foundations, Jaime Erin Follicular Lymphoma Research Consortium, and the University of Miami Sylvester Comprehensive Cancer Center. We thank University of Miami flow cytometry core facility for cell sorting and calcium analysis.

Author contributions

FG: designed and performed experiments, analyzed data, and wrote the manuscript. YL: performed experiments. XJ: performed experiments. XL: performed experiments. DR: provided reagents, designed experiments, and analyzed data. CL: analyzed data and wrote the manuscript. KK: performed experiments. MM: performed analysis of mutational databases. LR: provided valuable reagents. RV: analyzed data and performed experiments. FV: analyzed data. VTM: performed experiments and analyzed data. ISL: conceptualized these studies, analyzed data, and wrote the manuscript. All the authors read this manuscript and approved its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izidore S. Lossos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Luo, Y., Jiang, X. et al. Recent BCR stimulation induces a negative autoregulatory loop via FBXO10 mediated degradation of HGAL. Leukemia 34, 553–566 (2020). https://doi.org/10.1038/s41375-019-0579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0579-5

Search

Quick links