Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell biology

A human bone marrow mesodermal-derived cell population with hemogenic potential

A Correction to this article was published on 11 June 2018

This article has been updated

Abstract

The presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency. These adult-derived cells can be extensively culture expanded in vitro without loss of potential, they preserve a biased hemogenic transcriptional profile, and, upon in vitro induction with Oct4, assume a hematopoietic phenotype. In vivo, these cells, upon transplantation into a fetal microenvironment, contribute to the vasculature, and generate hematopoietic cells that provide multilineage repopulation upon serial transplantation. The identification of this human somatic cell population provides novel insights into human ontogenetic hematovascular potential, which could lead to a better understanding of, and new target therapies for, malignant and nonmalignant hematologic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 11 June 2018

    At the time of publication the funding information was omitted from the article – this has now been corrected in both the HTML and the PDF.

References

  1. Li Z, Chen MJ, Stacy T, Speck NA. Runx1 function in hematopoiesis is required in cells that express Tek. Blood. 2006;107:106–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, et al. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med. 2015;212:93–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457:887–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2:252–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3:625–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Charbord P, Tavian M, Coulombel L, Luton D, San Clemente H, Humeau L, et al. [Early ontogeny of the human hematopoietic system]. C R Seances Soc Biol Fil. 1995;189:601–9.

    PubMed  CAS  Google Scholar 

  7. Swiers G, Baumann C, O’Rourke J, Giannoulatou E, Taylor S, Joshi A, et al. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat Commun. 2013;4:2924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development. 1998;125:4575–83.

    PubMed  CAS  Google Scholar 

  9. Tamura H, Okamoto S, Iwatsuki K, Futamata Y, Tanaka K, Nakayama Y, et al. In vivo differentiation of stem cells in the aorta-gonad-mesonephros region of mouse embryo and adult bone marrow. Exp Hematol. 2002;30:957–66.

    Article  PubMed  CAS  Google Scholar 

  10. Nadin BM, Goodell MA, Hirschi KK. Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood. 2003;102:2436–43.

    Article  PubMed  CAS  Google Scholar 

  11. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7:718–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kataoka H, Takakura N, Nishikawa S, Tsuchida K, Kodama H, Kunisada T, et al. Expressions of PDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev Growth Differ. 1997;39:729–40.

    Article  PubMed  CAS  Google Scholar 

  13. Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F, et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:553–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545:439–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Exp Hematol. 2011;39:225–37.

    Article  PubMed  CAS  Google Scholar 

  16. Oberlin E, Tavian M, Blazsek I, Peault B. Blood-forming potential of vascular endothelium in the human embryo. Development. 2002;129:4147–57.

    PubMed  CAS  Google Scholar 

  17. Pelosi E, Valtieri M, Coppola S, Botta R, Gabbianelli M, Lulli V, et al. Identification of the hemangioblast in postnatal life. Blood. 2002;100:3203–8.

    Article  PubMed  CAS  Google Scholar 

  18. Yu QC, Hirst CE, Costa M, Ng ES, Schiesser JV, Gertow K, et al. APELIN promotes hematopoiesis from human embryonic stem cells. Blood. 2012;119:6243–54.

    Article  PubMed  CAS  Google Scholar 

  19. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.

    PubMed  CAS  Google Scholar 

  20. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116(Pt 9):1827–35.

    Article  PubMed  CAS  Google Scholar 

  21. Ning H, Lin G, Lue TF, Lin CS. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun. 2011;413:353–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Mineral Res. 2003;18:696–704.

    Article  Google Scholar 

  23. Sanada C, Kuo CJ, Colletti EJ, Soland M, Mokhatari S, Knovich MA, et al. Mesenchymal stem cells contribute to endogenous FVIIIc production. J Cell Physiol. 2012;228:1010–6.

    Article  CAS  Google Scholar 

  24. Soland MA, Keyes LR, Bayne R, Moon J, Porada CD, St Jeor S, et al. Perivascular stromal cells as a potential reservoir of human cytomegalovirus. Am J Transplant. 2014;1:820–30.

    Article  Google Scholar 

  25. Chamberlain J, Yamagami T, Colletti E, Theise ND, Desai J, Frias A, et al. Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology. 2007;46:1935–45.

    Article  PubMed  CAS  Google Scholar 

  26. Shaw SW, Bollini S, Nader KA, Gastadello A, Mehta V, Filppi E, et al. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses. Cell Transplant. 2011;20:1015–31.

    Article  PubMed  Google Scholar 

  27. Crapnell KB, Almeida-Porada G, Khaiboullina S, St Jeor SC, Zanjani ED. Human haematopoietic stem cells that mediate long-term in vivo engraftment are not susceptible to infection by human cytomegalovirus. Br J Haematol. 2004;124:676–84.

    Article  PubMed  Google Scholar 

  28. Goodrich AD, Ersek A, Varain NM, Groza D, Cenariu M, Thain DS, et al. In vivo generation of beta-cell-like cells from CD34(+) cells differentiated from human embryonic stem cells. Exp Hematol. 2010;38:516–25. e514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma(c)−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA. 2011;108:13218–23.

    Article  PubMed  Google Scholar 

  30. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010;468:521–6.

    Article  PubMed  CAS  Google Scholar 

  31. Takenaga M, Fukumoto M, Hori Y. Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. J Cell Sci. 2007;120(Pt 12):2078–90.

    Article  PubMed  CAS  Google Scholar 

  32. Slukvin II. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood. 2013;122:4035–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32:554–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Park TS, Zimmerlin L, Zambidis ET. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells. Cytom A. 2013;83:114–26.

    Article  CAS  Google Scholar 

  35. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011;333:218–21.

    Article  PubMed  CAS  Google Scholar 

  36. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93:741–53.

    Article  PubMed  CAS  Google Scholar 

  37. Hirschi KK. Hemogenic endothelium during development and beyond. Blood. 2012;119:4823–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Charbord P, Tavian M, Humeau L, Peault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood. 1996;87:4109–19.

    PubMed  CAS  Google Scholar 

  39. Tavian M, Cortes F, Charbord P, Labastie MC, Peault B. Emergence of the haematopoietic system in the human embryo and foetus. Haematologica. 1999;84 Suppl EHA-4:1–3.

    PubMed  CAS  Google Scholar 

  40. Almeida-Porada G, Porada CD, Tran N, Zanjani ED. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood. 2000;95:3620–7.

    PubMed  CAS  Google Scholar 

  41. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

    Article  PubMed  CAS  Google Scholar 

  42. Panopoulos AD, Belmonte JC. Induced pluripotent stem cells in clinical hematology: potentials, progress, and remaining obstacles. Curr Opin Hematol. 2012;19:256–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by NHLBI R01HL097623 and Intramural Pilot program of Wake Forest School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graça Almeida-Porada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, S., Colletti, E., Yin, W. et al. A human bone marrow mesodermal-derived cell population with hemogenic potential. Leukemia 32, 1575–1586 (2018). https://doi.org/10.1038/s41375-018-0016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0016-1

This article is cited by

Search

Quick links