Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting subclinical organ damage in obstructive sleep apnea: a narrative review

Abstract

Subclinical abnormalities in cardiac and vascular structure reflect the adverse effects triggered by a variety of risk factors on the cardiovascular (CV) system thereby representing an intermediate step in the cardiovascular continuum; such alterations are recognized as reliable markers of increased cardiovascular risk in different clinical settings including obstructive sleep apnea (OSA). The mechanisms underlying subclinical organ damage (OD) in the OSA setting are multifactorial. Hypoxemia and hypercapnia, induced by repeated collapses of upper airways, have been suggested to trigger a cascade of events such as activation of the sympathetic tone, renin–angiotensin–aldosterone system leading to endothelial dysfunction, vasoconstriction, myocardial and vascular remodeling, and hypertension. Furthermore, coexisting non-haemodynamic alterations such as increased oxidative stress, release of inflammatory substances, enhanced lipolysis and insulin resistance have been reported to play a role in the pathogenesis of both cardiac and extra-cardiac OD. In this article we reviewed available evidence on the association between OSA and subclinical cardiac (i.e., left and right ventricular hypertrophy, left atrial dilatation) and extra-cardiac organ damage (i.e., carotid atherosclerosis, arterial stiffness, microvascular retinal changes, and microalbuminuria). This association is apparently stronger for cardiac and carotid subclinical damage than for other markers (i.e., arterial stiffness and retinal changes) and mostly evident in the setting of severe OSA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obstructive sleep apnea and organ damage.

Similar content being viewed by others

References

  1. Dredla BK, Castillo PR. Cardiovascular consequences of obstructive sleep apnea. Curr Cardiol Rep. 2019;21:137.

    PubMed  Google Scholar 

  2. Lacedonia D, Carpagnano GE, Patricelli G, Carone M, Gallo C, Caccavo I, et al. Prevalence of comorbidities in patients with obstructive sleep apnea syndrome, overlap syndrome and obesity hypoventilation syndrome. Clin Respir J. 2018;12:1905–11.

    PubMed  Google Scholar 

  3. Seravalle G, Mancia G, Grassi G. Sympathetic nervous system, sleep, and hypertension. Curr Hypertens Rep. 2018;20:74.

    PubMed  Google Scholar 

  4. Grassi G, Facchini A, Trevano FQ, Dell’Oro R, Arenare F, Tana F, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46:321–5.

    CAS  PubMed  Google Scholar 

  5. Khayat RN, Varadharaj S, Porter K, Sow A, Jarjoura D, Gavrilin MA, et al. Angiotensin receptor expression and vascular endothelial dysfunction in obstructive sleep apnea. Am J Hypertens. 2018;31:355–61.

    CAS  PubMed  Google Scholar 

  6. Schlatzer C, Schwarz EI, Sievi NA, Clarenbach CF, Gaisl T, Haegeli LM, et al. Intrathoracic pressure swings induced by simulated obstructive sleep apnoea promote arrhythmias in paroxysmal atrial fibrillation. Europace. 2016;18:64–70.

    PubMed  Google Scholar 

  7. Isobe Y, Nakatsumi Y, Sugiyama Y, Hamaoka T, Murai H, Takamura M, et al. Severity indices for obstructive sleep apnea syndrome reflecting glycemic control or insulin resistance. Intern Med. 2019;58:3227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:2284–309.

    CAS  Google Scholar 

  9. Park JS, Shin JS, Lee YH, Seo KW, Choi BJ, Choi SY, et al. Prognostic impact of left ventricular mass change in patients with ST-elevation myocardial infarction. Medicine. 2018;97:e9748.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salvetti M, Muiesan ML, Paini A, Monteduro C, Agabiti-Rosei C, Aggiusti C, et al. Left ventricular hypertrophy and renal dysfunction during antihypertensive treatment adversely affect cardiovascular prognosis in hypertensive patients. J Hypertens. 2012;30:411–20.

    CAS  PubMed  Google Scholar 

  11. Catena C, Colussi GL, Valeri M, Sechi LA. Association of aldosterone with left ventricular mass: interaction with plasma fibrinogen levels. Am J Hypertens. 2012;26:111–7.

    PubMed  Google Scholar 

  12. Lazzeroni D, Rimoldi O, Camici PG. From left ventricular hypertrophy to dysfunction and failure. Circ J. 2016;80:555–64.

    PubMed  Google Scholar 

  13. Patil DR, Sarber KM. Sleep apnea treatment considerations in patients with comorbidities. Otolaryngol Clin North Am. 2020;S0030-6665:30003–7.

    Google Scholar 

  14. Hedner J, Ejnell H, Caidahl K. Left ventricular hypertrophy independent of hypertension in patients with obstructive sleep apnoea. J Hypertens. 1990;8:941–6.

    CAS  PubMed  Google Scholar 

  15. Shivalkar B, Van de Heyning C, Kerremans M, Rinkevich D, Verbraecken J, De Backer W, et al. Obstructive sleep apnea syndrome: more insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47:1433–9.

    PubMed  Google Scholar 

  16. Myslinski W, Duchna HW, Rasche K, Dichmann M, Mosiewicz J, Schultze-Werninghaus G. Left ventricular geometry in patients with obstructive sleep apnea coexisting with treated systemic hypertension. Respiration. 2007;74:176–83.

    PubMed  Google Scholar 

  17. Cioffi G, Russo TE, Stefenelli C, Selmi A, Furlanello F, Cramariuc D, et al. Severe obstructive sleep apnea elicits concentric left ventricular geometry. J Hypertens. 2010;28:1074–82.

    CAS  PubMed  Google Scholar 

  18. Cioffi G, Russo TE, Selmi A, Stefenelli C, Furlanello F. Analysis of left ventricular systolic function by midwall mechanics in patients with obstructive sleep apnoea. Eur J Echocardiogr. 2011;12:61–8.

    PubMed  Google Scholar 

  19. Wachter R, Lüthje L, Klemmstein D, Lüers C, Stahrenberg R, Edelmann F, et al. Impact of obstructive sleep apnoea on diastolic function. Eur Respir J. 2013;41:376–83.

    PubMed  Google Scholar 

  20. Sun Y, Yuan H, Zhao MQ, Wang Y, Xia M, Li YZ. Cardiac structural and functional changes in old elderly patients with obstructive sleep apnoea-hypopnoea syndrome. J Int Med Res. 2014;42:395–404.

    PubMed  Google Scholar 

  21. Glantz H, Thunström E, Johansson MC, Wallentin Guron C, Uzel H, Ejdebäck J, et al. Obstructive sleep apnea is independently associated with worse diastolic function in coronary artery disease. Sleep Med. 2015;16:160–7.

    PubMed  Google Scholar 

  22. Lisi E, Faini A, Bilo G, Lonati LM, Revera M, Salerno S, et al. Diastolic dysfunction in controlled hypertensive patients with mild-moderate obstructive sleep apnea. Int J Cardiol. 2015;187:686–92.

    PubMed  Google Scholar 

  23. Usui Y, Takata Y, Inoue Y, Tomiyama H, Kurohane S, Hashimura Y, et al. Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men. Sleep Med. 2013;14:155–9.

    PubMed  Google Scholar 

  24. Imai Y, Tanaka N, Usui Y, Takahashi N, Kurohane S, Takei Y, et al. Severe obstructive sleep apnea increases left atrial volume independently of left ventricular diastolic impairment. Sleep Breath. 2015;19:1249–55.

    PubMed  Google Scholar 

  25. Yamaguchi T, Takata Y, Usui Y, Asanuma R, Nishihata Y, Kato K, et al. Nocturnal intermittent hypoxia is associated with left ventricular hypertrophy in middle-aged men with hypertension and obstructive sleep apnea. Am J Hypertens. 2016;29:372–9.

    CAS  PubMed  Google Scholar 

  26. Sekizuka H, Osada N, Akashi YJ. Impact of obstructive sleep apnea and hypertension on left ventricular hypertrophy in Japanese patients. Hypertens Res. 2017;40:477–82.

    PubMed  Google Scholar 

  27. Chami HA, Devereux RB, Gottdiener JS, Mehra R, Roman MJ, Benjamin EJ, et al. Left ventricular morphology and systolic function in sleep-disordered breathing: the Sleep Heart Health Study. Circulation. 2008;117:2599–607.

    PubMed  PubMed Central  Google Scholar 

  28. Avelar E, Cloward TV, Walker JM, Farney RJ, Strong M, Pendleton RC, et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension. 2007;49:34–9.

    CAS  PubMed  Google Scholar 

  29. Muxfeldt ES, Margallo VS, Guimarães GM, Salles GF. Prevalence and associated factors of obstructive sleep apnea in patients with resistant hypertension. Am J Hypertens. 2014;27:1069–78.

    CAS  PubMed  Google Scholar 

  30. Pujante P, Abreu C, Moreno J, Barrero EA, Azcarate P, Campo A, et al. Obstructive sleep apnea severity is associated with left ventricular mass independent of other cardiovascular risk factors in morbid obesity. J Clin Sleep Med. 2013;9:1165–71.

    PubMed  PubMed Central  Google Scholar 

  31. Dobrowolski P, Klisiewicz A, Prejbisz A, Florczak E, Rybicka J, Bieleń P, et al. Factors associated with diastolic dysfunction in patients with resistant hypertension: resist-POL study. Am J Hypertens. 2015;28:307–11.

    PubMed  Google Scholar 

  32. Bauters FA, Hertegonne KB, De Buyzere M, Joos GF, Chirinos JA, Rietzschel ER. Phenotype and risk burden of sleep apnea: a population-based cohort study. Hypertension. 2019;74:1052–62.

    CAS  PubMed  Google Scholar 

  33. Yu L, Li H, Liu X, Fan J, Zhu Q, Li J, et al. Left ventricular remodeling and dysfunction in obstructive sleep apnea: systematic review and meta-analysis. Herz. 2019. PMID: 31555891.

  34. Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Targeting concentric left ventricular hypertrophy in obstructive sleep apnea syndrome. A meta-analysis of echocardiographic studies. Am J Hypertens. 2019;33:310–5.

    Google Scholar 

  35. Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Obstructive sleep apnoea syndrome and left ventricular hypertrophy: a meta-analysis of echocardiographic studies. J Hypertens. 2020;38:1640–9.3.

    CAS  PubMed  Google Scholar 

  36. Bombelli M, Facchetti R, Cuspidi C, Villa P, Dozio D, Brambilla G, et al. Prognostic significance of left atrial enlargement in a general population: results of the PAMELA study. Hypertension. 2014;64:1205–11.

    CAS  PubMed  Google Scholar 

  37. Tsioufis C, Stougiannos P, Taxiarchou E, Skiadas I, Chatzis D, Thomopoulos C, et al. The interplay between haemodinamic load, brain natriuretic peptide and left atrial size in the early stages of essential hypertension. J Hypertens. 2006;24:965–72.

    CAS  PubMed  Google Scholar 

  38. Romero-Corral A, Somers VK, Pellikka KA, Olson EJ, Bailey KR, Korinek J, et al. Decreased right and left ventricular myocardial performance in obstructive sleep apnea. Chest. 2007;132:1863–70.

    PubMed  Google Scholar 

  39. Altekin RE, Karakas MS, Yanikoglu A, Ozel D, Ozbudak O, Demir I, et al. Determination of right ventricular dysfunction using the speckle tracking echocardiography method in patients with obstructive sleep apnea. Cardiol J. 2012;19:130–9.

    PubMed  Google Scholar 

  40. Varghese MJ, Sharma G, Shukla G, Seth S, Sundeep S, Gupta A, et al. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: a case control study using speckle tracking imaging. Indian Heart J. 2017;69:305–10.

    PubMed  Google Scholar 

  41. Hjalm HH, Fu F, Hansson PO, Zhong Y, Caidahl K, Mandalenakis Z, et al. Association between left atrial enlargement and obstructive sleep apnea in a general population of 71-year-old men. J Sleep Res. 2018;27:254–60.

    Google Scholar 

  42. Mattaliano P, Lombardi C, Sangalli D, Faini A, Corrà B, Adobbati L, et al. Impact of obstructive sleep apnea on cardiac organ damage in patients with acute ischemic stroke. J Hypertens. 2018;36:1351–9.

    CAS  PubMed  Google Scholar 

  43. Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G. Working Group on Heart, Hypertension of the Italian Society of Hypertension. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J Hypertens. 2013;31:858–65.

    CAS  PubMed  Google Scholar 

  44. Vitarelli A, Terzano C, Saponara M, Gaudio C, Mangieri E, Capotosto L, et al. Assessment of right ventricular function in obstructive sleep apnea syndrome and effects of continuous positive airway pressure therapy: a pilot study. Can J Cardiol. 2015;31:823–31.

    PubMed  Google Scholar 

  45. Maripov A, Mamazhakypov A, Sartmyrzaeva M, Akunov A, Muratali K, Duishobaev M, et al. Right ventricular remodeling and dysfunction in obstructive sleep apnea: a systematic review of the literature and meta-analysis. Can Respir J. 2017;2017:1587865.

    PubMed  PubMed Central  Google Scholar 

  46. Paraskevas KI, Sillesen HH. Carotid atherosclerosis markers and adverse cardiovascular events. Int J Cardiol. 2020;15:178.

    Google Scholar 

  47. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7:1025–38.

    PubMed  Google Scholar 

  48. Kokubo Y, Watanabe M, Higashiyama A, Nakao YM, Nakamura F, Miyamoto Y. Impact of intima-media thickness progression in the common carotid arteries on the risk of incident cardiovascular disease in the Suita Study. J Am Heart Assoc. 2018;7:e007720.

  49. Drager LF, Bortolotto LA, Krieger EM, Lorenzi-Filho G. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis. Hypertension. 2009;53:64–9.

    CAS  PubMed  Google Scholar 

  50. Steiropoulos P, Bogiatzi C, Archontogeorgis K, Nena E, Xanthoudaki M, Boglou P, et al. Is there evidence of early vascular disease in patients with obstructive sleep apnoea without known comorbidities? Preliminary findings. Open Cardiovasc Med J. 2013;7:61–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ciccone MM, Scicchitano P, Zito A, Cortese F, Boninfante B, Falcone VA, et al. Correlation between inflammatory markers of atherosclerosis and carotid intima-media thickness in obstructive sleep apnea. Molecules. 2014;19:1651–62.

    PubMed  PubMed Central  Google Scholar 

  52. Gunnarsson SI, Peppard PE, Korcarz CE, Barnet JH, Aeschlimann SE, Hagen EW, et al. Obstructive sleep apnea is associated with future subclinical carotid artery disease: thirteen-year follow-up from the Wisconsin Sleep Cohort. Arterioscler Thromb Vasc Biol. 2014;34:2338–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nadeem R, Harvey M, Singh M, Khan AA, Albustani M, Baessler A, et al. Patients with obstructive sleep apnea display increased carotid intima media: a meta-analysis. Int J Vasc Med. 2013;2013:839582.

    PubMed  PubMed Central  Google Scholar 

  54. Zhou M, Guo B, Wang Y, Yan D, Lin C, Shi Z. The association between obstructive sleep apnea and carotid intima-media thickness: a systematic review and meta-analysis. Angiology. 2017;68:575–83.

    PubMed  Google Scholar 

  55. Kim J, Mohler ER, Keenan BT, Maislin D, Arnardottir E, Gislason T, et al. Carotid artery wall thickness in obese and nonobese adults with obstructive sleep apnea before and following positive airway pressure treatment. Sleep. 2017;40:1–10.

    Google Scholar 

  56. Sarioglu N, Demirpolat G, Erel F, Kose M. Which is the ideal marker for early atherosclerosis in obstructive sleep apnea (OSA)—carotid intima-media thickness or mean platelet volume? Med Sci Monit. 2017;23:1674–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kong D, Qin Z, Wang W, Kang J. Effect of obstructive sleep apnea on carotid artery intima media thickness related to inflammation. Clin Invest Med. 2017;40:E25–33.

    CAS  PubMed  Google Scholar 

  58. Chang YT, Lin HC, Chang WN, Tsai NW, Huang CG, Wang HC, et al. Impact of inflammation and oxidative stress on carotid intima-media thickness in sleep apnea patients without metabolic syndrome. J Sleep Res. 2017;26:151–8.

    PubMed  Google Scholar 

  59. Trojova I, Kozarova M, Petrasova D, Malachovska Z, Paranicova I, Joppa P, et al. Circulating lipopolysaccharide-binding protein and carotid intima-media thickness in obstructive sleep apnea. Physiol Res. 2018;67:69–78.

    CAS  PubMed  Google Scholar 

  60. Nahorecki A, Postrzech-Adamczyk K, Święcicka-Klama A, Skomro R, Szuba A. Prevalence of sleep apnea in patients with carotid artery stenosis. Adv Exp Med Biol. 2019;1211:69–75.

    CAS  PubMed  Google Scholar 

  61. Chang TI, Lee UK, Zeidler MR, Liu SY, Polanco JC, Friedlander AH. Severity of obstructive sleep apnea is positively associated with the presence of carotid artery atheromas. J Oral Maxillofac Surg. 2019;77:93–9.

    PubMed  Google Scholar 

  62. Deeb R, Smeds MR, Bath J, Peterson E, Roberts M, Beckman N, et al. Snoring and carotid artery disease: a new risk factor emerges. Laryngoscope. 2019;129:265–8.

    PubMed  Google Scholar 

  63. Song F, Zou J, Song Z, Xu H, Qian Y, Zhu H, et al. Association of adipocytokines with carotid intima media thickness and arterial stiffness in obstructive sleep apnea patients. Front Endocrinol. 2020;11:177.

    CAS  Google Scholar 

  64. Deol R, Lee KA, Kanaya AM, Kandula NR. Obstructive sleep apnea risk and subclinical atherosclerosis in South Asians living in the United States. Sleep Health. 2020;6:124–30.

    PubMed  Google Scholar 

  65. Kim ED, Ballew SH, Tanaka H, Heiss G, Coresh J, Matsushita K. Short-term prognostic impact of arterial stiffness in older adults without prevalent cardiovascular disease. Hypertension. 2019;74:1373–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Drager LF, Bortolotto LA, Figueiredo AC, Caldin Silva B, Krieger EM, et al. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest. 2007;131:1379–86.

    PubMed  Google Scholar 

  67. Jenner R, Fatureto-Borges F, Costa-Hong V, Lopes HF, Teixeira SH, Marum E, et al. Association of obstructive sleep apnea with arterial stiffness and nondipping blood pressure in patients with hypertension. J Clin Hypertens. 2017;19:910–8.

    CAS  Google Scholar 

  68. Kim T, Lee CS, Lee SD, Kang SH, Han JW, Malhotra A, et al. Impacts of comorbidities on the association between arterial stiffness and obstructive sleep apnea in the elderly. Respiration. 2015;89:304–11.

    PubMed  PubMed Central  Google Scholar 

  69. Kim J, Lee SK, Yoon DW, Shin C. Obstructive sleep apnoea is associated with progression of arterial stiffness independent of obesity in participants without hypertension: a KoGES Prospective Cohort Study. Sci Rep. 2018;8:8152.

    PubMed  PubMed Central  Google Scholar 

  70. Joyeux-Faure M, Tamisier R, Borel JC, Millasseau S, Galerneau LM, Destors M, et al. Contribution of obstructive sleep apnoea to arterial stiffness: a meta-analysis using individual patient data. Thorax. 2018;73:1146–51.

    PubMed  Google Scholar 

  71. Kwon Y, Logan J, Redline S, Duprez D, Jacobs DR Jr, Ouyang P, et al. Obstructive sleep apnea and structural/functional properties of the thoracic ascending aorta: The Multi-Ethnic Study of Atherosclerosis (MESA). Cardiology. 2019;142:180–8.

    PubMed  PubMed Central  Google Scholar 

  72. Masaidi M, Cuspidi C, Giudici V, Negri F, Sala C, Zanchetti A, et al. Is retinal arteriolar-venular ratio associated with cardiac and extracardiac organ damage in essential hypertension? J Hypertens. 2009;27:1277–83.

    CAS  PubMed  Google Scholar 

  73. Boland LL, Shahar E, Wong TY, Klein R, Punjabi N, Robbins JA, et al. Sleep-disordered breathing is not associated with the presence of retinal microvascular abnormalities: the Sleep Heart Health Study. Sleep. 2004;27:467–73.

    PubMed  Google Scholar 

  74. Shankar A, Peppard PE, Young T, Klein BE, Klein R, Nieto FJ. Sleep-disordered breathing and retinal microvascular diameter. Atherosclerosis. 2013;226:124–8.

    CAS  PubMed  Google Scholar 

  75. Chew M, Xie J, Klein R, Klein B, Cotch MF, Redline S, et al. Sleep apnea and retinal signs in cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Sleep Breath. 2016;20:15–23.

    PubMed  Google Scholar 

  76. Lin GM, Redline S, Klein R, Colangelo LA, Cotch MF, Wong TY, et al. Sex-specific association of obstructive sleep apnea with retinal microvascular signs: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2016;5:e00359.

    Google Scholar 

  77. Faulx MD, Storfer-Isser A, Kirchner HL, Jenny NS, Tracy RP, Redline S. Obstructive sleep apnea is associated with increased urinary albumin excretion. Sleep. 2007;30:923–9.

    PubMed  PubMed Central  Google Scholar 

  78. Ursavas A, Karadag M, Gullulu M, Demirdogen E, Coskun F, Onart S, et al. Low-grade urinary albumin excretion in normotensive/non-diabetic obstructive sleep apnea patients. Sleep Breath. 2008;12:217–22.

    PubMed  Google Scholar 

  79. Tsioufis C, Thomopoulos C, Dimitriadis K, Amfilochiou A, Tsiachris D, Selima M, et al. Association of obstructive sleep apnea with urinary albumin excretion in essential hypertension: a cross-sectional study. Am J Kidney Dis. 2008;52:285–93.

    PubMed  Google Scholar 

  80. Prejbisz A, Florczak E, Pregowska-Chwala B, Klisiewicz A, Kusmierczyk-Droszcz B, Zielinski T, et al. Relationship between obstructive sleep apnea and markers of cardiovascular alterations in never-treated hypertensive patients. Hypertens Res. 2014;37:573–9.

    PubMed  Google Scholar 

  81. Bulcun E, Ekici M, Ekici A, Cimen DA, Kisa U. Microalbuminuria in obstructive sleep apnea syndrome. Sleep Breath. 2015;19:1191–7.

    PubMed  Google Scholar 

  82. Archontogeorgis K, Nena E, Tsigalou C, Voulgaris A, Xanthoudaki M, Froudarakis M, et al. Cystatin C levels in middle-aged patients with obstructive sleep apnea syndrome. Pulm Med. 2016;2016:8081723.

    PubMed  PubMed Central  Google Scholar 

  83. Corral J, Mogollon MV, Sánchez-Quiroga MÁ, Gómez de Terreros J, Romero A, Caballero C, et al. Spanish Sleep Network. Echocardiographic changes with non-invasive ventilation and CPAP in obesity hypoventilation syndrome. Thorax. 2018;73:361–8.

    PubMed  Google Scholar 

  84. Chen LD, Lin L, Lin XJ, Ou YW, Wu Z, Ye YM, et al. Effect of continuous positive airway pressure on carotid intima-media thickness in patients with obstructive sleep apnea: a meta-analysis. PLoS ONE. 2017;12:e0184293.

    PubMed  PubMed Central  Google Scholar 

  85. Jain S, Gurubhagavatula I, Townsend R, Kuna ST, Teff K, Wadden TA, et al. Effect of CPAP, weight loss, or CPAP plus weight loss on central hemodynamics and arterial stiffness. Hypertension. 2017;70:1283–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Cuspidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuspidi, C., Tadic, M., Gherbesi, E. et al. Targeting subclinical organ damage in obstructive sleep apnea: a narrative review. J Hum Hypertens 35, 26–36 (2021). https://doi.org/10.1038/s41371-020-00397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-00397-0

This article is cited by

Search

Quick links