Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Associations between primary aldosteronism and diabetes, poor bone health, and sleep apnea—what do we know so far?

Abstract

Primary aldosteronism (PA), the most common cause of secondary hypertension, is a well-recognized condition that can lead to cardiovascular and renal complications. PA is frequently left undiagnosed and untreated, leading to aldosterone-specific morbidity and mortality. In this review we highlight the evidence linking PA with other conditions such as (i) diabetes mellitus, (ii) obstructive sleep apnea, and (iii) bone health, along with clinical implications and proposed underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Young WF Jr., Calhoun DA, Lenders JWM, Stowasser M, Textor SC. Screening for endocrine hypertension: an endocrine society scientific statement. Endocr Rev. 2017;38:103–22.

    Google Scholar 

  2. Sukor N. Endocrine hypertension–current understanding and comprehensive management review. Eur J Intern Med. 2011;22:433–40.

    CAS  PubMed  Google Scholar 

  3. Stowasser M, Taylor PJ, Pimenta E, Ahmed AH, Gordon RD. Laboratory investigation of primary aldosteronism. Clin Biochemist Rev. 2010;31:39–56.

    Google Scholar 

  4. Sukor N. Primary aldosteronism: from bench to bedside. Endocrine. 2012;41:31–9.

    CAS  PubMed  Google Scholar 

  5. Conn JW, Cohen EL, Rovner DR, Nesbit RM. Normokalemic primary aldosteronism. A detectable cause of curable "essential" hypertension. J Am Med Assoc. 1965;193:200–6.

    CAS  Google Scholar 

  6. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    CAS  PubMed  Google Scholar 

  7. Huang KH, Yu CC, Hu YH, Chang CC, Chan CK, Liao SC, et al. Targeted treatment of primary aldosteronism - The consensus of Taiwan Society of Aldosteronism. J Formos Med Assoc. 2019;118:72–82.

    PubMed  Google Scholar 

  8. Sukor N, Gordon RD, Ku YK, Jones M, Stowasser M. Role of unilateral adrenalectomy in bilateral primary aldosteronism: a 22-year single center experience. J Clin Endocrinol Metab. 2009;94:2437–45.

    CAS  PubMed  Google Scholar 

  9. Young WF Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J Intern Med. 2019;285:126–48.

    PubMed  Google Scholar 

  10. Sukor N. Secondary hypertension: a condition not to be missed. Postgrad Med J. 2011;87:706–13.

    PubMed  Google Scholar 

  11. Reincke M, Fischer E, Gerum S, Merkle K, Schulz S, Pallauf A, et al. Observational study mortality in treated primary aldosteronism: the German Conn's registry. Hypertension. 2012;60:618–24.

    CAS  PubMed  Google Scholar 

  12. Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, et al. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch Intern Med. 2008;168:80–5.

    CAS  PubMed  Google Scholar 

  13. Sukor N. Clinical approach to young hypertension. Brunei Int. Medl J. 2013;9:81–92.

  14. Dominguez A, Gupta S. Hyperaldosteronism. Treasure Island, FL: StatPearls; 2019.

  15. Kline GA, Prebtani APH, Leung AA, Schiffrin EL. Primary aldosteronism: a common cause of resistant hypertension. CMAJ. 2017;189:E773–E8.

    PubMed  PubMed Central  Google Scholar 

  16. Dudenbostel T, Calhoun DA. Resistant hypertension, obstructive sleep apnoea and aldosterone. J Hum Hypertens. 2012;26:281–7.

    CAS  PubMed  Google Scholar 

  17. Jin ZN, Wei YX. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J Geriatr Cardiol. 2016;13:333–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang SJ, Jiang XT, Zhang XB, Yin XW, Deng WX. Does continuous positive airway pressure reduce aldosterone levels in patients with obstructive sleep apnea? Sleep Breath. 2016;20:921–8.

    PubMed  Google Scholar 

  19. Salcuni AS, Carnevale V, Battista C, Palmieri S, Eller-Vainicher C, Guarnieri V, et al. Primary aldosteronism as a cause of secondary osteoporosis. Eur J Endocrinol. 2017;177:431–7.

    CAS  PubMed  Google Scholar 

  20. Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017;2.

  21. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91:454–9.

    CAS  PubMed  Google Scholar 

  22. Mosso LM, Carvajal CA, Maiz A, Ortiz EH, Castillo CR, Artigas RA, et al. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens. 2007;25:2125–30.

    CAS  PubMed  Google Scholar 

  23. Reincke M, Meisinger C, Holle R, Quinkler M, Hahner S, Beuschlein F, et al. Is primary aldosteronism associated with diabetes mellitus? Results of the German Conn's Registry. Horm Metab Res. 2010;42:435–9.

    CAS  PubMed  Google Scholar 

  24. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6:51–9.

    PubMed  Google Scholar 

  25. Hanslik G, Wallaschofski H, Dietz A, Riester A, Reincke M, Allolio B, et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn's Registry. Eur J Endocrinol. 2015;173:665–75.

    CAS  PubMed  Google Scholar 

  26. Akehi Y, Yanase T, Motonaga R, Umakoshi H, Tsuiki M, Takeda Y, et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: a Large, Multicenter Cohort Study in Japan. Diabetes Care. 2019;42:938–45.

    CAS  PubMed  Google Scholar 

  27. Matrozova J, Steichen O, Amar L, Zacharieva S, Jeunemaitre X, Plouin PF. Fasting plasma glucose and serum lipids in patients with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2009;53:605–10.

    CAS  PubMed  Google Scholar 

  28. Widimsky J Jr., Sindelka G, Haas T, Prazny M, Hilgertova J, Skrha J. Impaired insulin action in primary hyperaldosteronism. Physiological Res. 2000;49:241–4.

    CAS  Google Scholar 

  29. Ishimori M, Takeda N, Okumura S, Murai T, Inouye H, Yasuda K. Increased insulin sensitivity in patients with aldosterone producing adenoma. Clin Endocrinol. 1994;41:433–8.

    CAS  Google Scholar 

  30. Tsurutani Y, Sugisawa C, Ishida A, Inoue K, Saito J, Omura M, et al. Aldosterone excess may inhibit insulin secretion: A comparative study on glucose metabolism pre- and post-adrenalectomy in patients with primary aldosteronism. Endocr J. 2017;64:339–46.

    CAS  PubMed  Google Scholar 

  31. Sindelka G, Widimsky J, Haas T, Prazny M, Hilgertova J, Skrha J. Insulin action in primary hyperaldosteronism before and after surgical or pharmacological treatment. Exp Clin Endocrinol Diabetes. 2000;108:21–5.

    CAS  PubMed  Google Scholar 

  32. Fischer E, Adolf C, Pallauf A, Then C, Bidlingmaier M, Beuschlein F, et al. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J Clin Endocrinol Metab. 2013;98:2513–20.

    CAS  PubMed  Google Scholar 

  33. Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, et al. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab. 2006;91:3457–63.

    CAS  PubMed  Google Scholar 

  34. Strauch B, Widimsky J, Sindelka G, Skrha J. Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiological Res. 2003;52:503–6.

    CAS  Google Scholar 

  35. Giacchetti G, Ronconi V, Turchi F, Agostinelli L, Mantero F, Rilli S, et al. Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. J Hypertens. 2007;25:177–86.

    CAS  PubMed  Google Scholar 

  36. Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35:1698–708.

    CAS  PubMed  Google Scholar 

  37. Chen ZW, Hung CS, Wu VC, Lin YH, group Ts. Primary aldosteronism and cerebrovascular diseases. Endocrinol Metab. 2018;33:429–34.

    CAS  Google Scholar 

  38. Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50.

    CAS  PubMed  Google Scholar 

  39. Kreze A Sr., Kreze-Spirova E, Mikulecky M. Diabetes mellitus in primary aldosteronism. Bratisl Lekarske Listy. 2000;101:187–90.

    Google Scholar 

  40. Fallo F, Della Mea P, Sonino N, Bertello C, Ermani M, Vettor R, et al. Adiponectin and insulin sensitivity in primary aldosteronism. Am J Hypertens. 2007;20:855–61.

    CAS  PubMed  Google Scholar 

  41. Zennaro MC, Caprio M, Feve B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab. 2009;20:444–51.

    CAS  PubMed  Google Scholar 

  42. Chanut F. Potassium channels rule over insulin release with an ion fist. PLoS Biol. 2006;4:e53.

    PubMed  PubMed Central  Google Scholar 

  43. Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JH. Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes. 2016;65:3–13.

    CAS  PubMed  Google Scholar 

  44. Barr CS, Lang CC, Hanson J, Arnott M, Kennedy N, Struthers AD. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1995;76:1259–65.

    CAS  PubMed  Google Scholar 

  45. Gao X, Peng L, Adhikari CM, Lin J, Zuo Z. Spironolactone reduced arrhythmia and maintained magnesium homeostasis in patients with congestive heart failure. J Card Fail. 2007;13:170–7.

    CAS  PubMed  Google Scholar 

  46. Tauchmanova L, Rossi R, Biondi B, Pulcrano M, Nuzzo V, Palmieri EA, et al. Patients with subclinical Cushing's syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab. 2002;87:4872–8.

    CAS  PubMed  Google Scholar 

  47. Gerards J, Heinrich DA, Adolf C, Meisinger C, Rathmann W, Sturm L, et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol co-secretion. J Clin Endocrinol Metab. 2019;104:3192–202.

    Google Scholar 

  48. Di Dalmazi G, Vicennati V, Garelli S, Casadio E, Rinaldi E, Giampalma E, et al. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing's syndrome: a 15-year retrospective study. Lancet Diabetes Endocrinol. 2014;2:396–405.

    PubMed  Google Scholar 

  49. Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54–60.

    CAS  PubMed  Google Scholar 

  50. Selvaraj J, Muthusamy T, Srinivasan C, Balasubramanian K. Impact of excess aldosterone on glucose homeostasis in adult male rat. Clin Chim Acta. 2009;407:51–7.

    CAS  PubMed  Google Scholar 

  51. Yamashita R, Kikuchi T, Mori Y, Aoki K, Kaburagi Y, Yasuda K, et al. Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade. Endocr J. 2004;51:243–51.

    CAS  PubMed  Google Scholar 

  52. Campion J, Lahera V, Cachofeiro V, Maestro B, Davila N, Carranza MC, et al. In vivo tissue specific modulation of rat insulin receptor gene expression in an experimental model of mineralocorticoid excess. Mol Cell Biochem. 1998;185:177–82.

    CAS  PubMed  Google Scholar 

  53. Hitomi H, Kiyomoto H, Nishiyama A, Hara T, Moriwaki K, Kaifu K, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension. 2007;50:750–5.

    CAS  PubMed  Google Scholar 

  54. Cascella T, Radhakrishnan Y, Maile LA, Busby WH Jr., Gollahon K, Colao A, et al. Aldosterone enhances IGF-I-mediated signaling and biological function in vascular smooth muscle cells. Endocrinology. 2010;151:5851–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneider HJ, Friedrich N, Klotsche J, Schipf S, Nauck M, Volzke H, et al. Prediction of incident diabetes mellitus by baseline IGF1 levels. Eur J Endocrinol. 2011;164:223–9.

    CAS  PubMed  Google Scholar 

  56. Calhoun DA, Nishizaka MK, Zaman MA, Harding SM. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea. Chest. 2004;125:112–7.

    CAS  PubMed  Google Scholar 

  57. Gonzaga CC, Gaddam KK, Ahmed MI, Pimenta E, Thomas SJ, Harding SM, et al. Severity of obstructive sleep apnea is related to aldosterone status in subjects with resistant hypertension. J Clin Sleep Med. 2010;6:363–8.

    PubMed  PubMed Central  Google Scholar 

  58. Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007;131:453–9.

    CAS  PubMed  Google Scholar 

  59. Ke X, Guo W, Peng H, Hu C, Zhang H, Peng C, et al. Association of aldosterone excess and apnea-hypopnea index in patients with resistant hypertension. Sci Rep. 2017;7:45241.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Muxfeldt ES, Margallo VS, Guimaraes GM, Salles GF. Prevalence and associated factors of obstructive sleep apnea in patients with resistant hypertension. Am J Hypertens. 2014;27:1069–78.

    CAS  PubMed  Google Scholar 

  61. Barcelo A, Pierola J, Esquinas C, de la Pena M, Arque M, Alonso-Fernandez A, et al. Relationship between aldosterone and the metabolic syndrome in patients with obstructive sleep apnea hypopnea syndrome: effect of continuous positive airway pressure treatment. PLoS ONE. 2014;9:e84362.

    PubMed  PubMed Central  Google Scholar 

  62. Di Murro A, Petramala L, Cotesta D, Zinnamosca L, Crescenzi E, Marinelli C, et al. Renin-angiotensin-aldosterone system in patients with sleep apnoea: prevalence of primary aldosteronism. J Renin Angiotensin Aldosterone Syst. 2010;11:165–72.

    PubMed  Google Scholar 

  63. Svatikova A, Olson LJ, Wolk R, Phillips BG, Adachi T, Schwartz GL, et al. Obstructive sleep apnea and aldosterone. Sleep. 2009;32:1589–92.

    PubMed  PubMed Central  Google Scholar 

  64. Lykouras D, Theodoropoulos K, Sampsonas F, Lagiou O, Lykouras M, Spiropoulou A, et al. The impact of obstructive sleep apnea syndrome on renin and aldosterone. Eur Rev Med Pharmacol Sci. 2015;19:4164–70.

    CAS  PubMed  Google Scholar 

  65. Gaddam K, Pimenta E, Thomas SJ, Cofield SS, Oparil S, Harding SM, et al. Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report. J Hum Hypertens. 2010;24:532–7.

    CAS  PubMed  Google Scholar 

  66. Yang L, Zhang H, Cai M, Zou Y, Jiang X, Song L, et al. Effect of spironolactone on patients with resistant hypertension and obstructive sleep apnea. Clin Exp Hypertens. 2016;38:464–8.

    CAS  PubMed  Google Scholar 

  67. Krasinska B, Miazga A, Cofta S, Szczepaniak-Chichel L, Trafas T, Krasinski Z, et al. Effect of eplerenone on the severity of obstructive sleep apnea and arterial stiffness in patients with resistant arterial hypertension. Polskie Archiwum Med Wewnetrznej. 2016;126:330–9.

    Google Scholar 

  68. Wang E, Chomsky-Higgins K, Chen Y, Nwaogu I, Seib CD, Shen WT, et al. Treatment of primary aldosteronism reduces the probability of obstructive sleep apnea. J Surgical Res. 2019;236:37–43.

    CAS  Google Scholar 

  69. Wolley MJ, Pimenta E, Calhoun D, Gordon RD, Cowley D, Stowasser M. Treatment of primary aldosteronism is associated with a reduction in the severity of obstructive sleep apnoea. J Hum Hypertens. 2017;31:561–7.

    CAS  PubMed  Google Scholar 

  70. Saarelainen S, Hasan J, Siitonen S, Seppala E. Effect of nasal CPAP treatment on plasma volume, aldosterone and 24-h blood pressure in obstructive sleep apnoea. J Sleep Res. 1996;5:181–5.

    CAS  PubMed  Google Scholar 

  71. Moller DS, Lind P, Strunge B, Pedersen EB. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea. Am J Hypertens. 2003;16:274–80.

    CAS  PubMed  Google Scholar 

  72. Nicholl DD, Hanly PJ, Poulin MJ, Handley GB, Hemmelgarn BR, Sola DY, et al. Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea. Am J Respiratory Crit Care Med. 2014;190:572–80.

    CAS  Google Scholar 

  73. Pimenta E, Calhoun DA, Oparil S. Sleep apnea, aldosterone, and resistant hypertension. Prog Cardiovascular Dis. 2009;51:371–80.

    CAS  Google Scholar 

  74. Kasai T, Bradley TD, Friedman O, Logan AG. Effect of intensified diuretic therapy on overnight rostral fluid shift and obstructive sleep apnoea in patients with uncontrolled hypertension. J Hypertens. 2014;32:673–80.

    CAS  PubMed  Google Scholar 

  75. Lavie L, Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J. 2009;33:1467–84.

    CAS  PubMed  Google Scholar 

  76. Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009;15:2988–3002.

    CAS  PubMed  Google Scholar 

  77. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45.

    PubMed  Google Scholar 

  78. Mansukhani MP, Kara T, Caples SM, Somers VK. Chemoreflexes, sleep apnea, and sympathetic dysregulation. Curr Hypertens Rep. 2014;16:476.

    PubMed  PubMed Central  Google Scholar 

  79. Cooper VL, Bowker CM, Pearson SB, Elliott MW, Hainsworth R. Effects of simulated obstructive sleep apnoea on the human carotid baroreceptor-vascular resistance reflex. J Physiol. 2004;557:1055–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ziegler MG, Milic M, Elayan H. Cardiovascular regulation in obstructive sleep apnea. Drug Discov Today Dis models. 2011;8:155–60.

    PubMed  PubMed Central  Google Scholar 

  81. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98:772–6.

    CAS  PubMed  Google Scholar 

  82. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.

    CAS  PubMed  Google Scholar 

  83. Rossi E, Sani C, Perazzoli F, Casoli MC, Negro A, Dotti C. Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens. 1995;8:884–93.

    CAS  PubMed  Google Scholar 

  84. Pilz S, Kienreich K, Drechsler C, Ritz E, Fahrleitner-Pammer A, Gaksch M, et al. Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J Clin Endocrinol Metab. 2012;97:E75–9.

    CAS  PubMed  Google Scholar 

  85. Loh HH, Kamaruddin NA, Zakaria R, Sukor N. Improvement of bone turnover markers and bone mineral density following treatment of primary aldosteronism. Minerva Endocrinol. 2018;43:117–25.

    PubMed  Google Scholar 

  86. Ceccoli L, Ronconi V, Giovannini L, Marcheggiani M, Turchi F, Boscaro M, et al. Bone health and aldosterone excess. Osteoporos Int. 2013;24:2801–7.

    CAS  PubMed  Google Scholar 

  87. Petramala L, Zinnamosca L, Settevendemmie A, Marinelli C, Nardi M, Concistre A, et al. Bone and mineral metabolism in patients with primary aldosteronism. Int J Endocrinol. 2014;2014:836529.

    Google Scholar 

  88. Jiang Y, Zhang C, Ye L, Su T, Zhou W, Jiang L, et al. Factors affecting parathyroid hormone levels in different types of primary aldosteronism. Clin Endocrinol. 2016;85:267–74.

    CAS  Google Scholar 

  89. Salcuni AS, Palmieri S, Carnevale V, Morelli V, Battista C, Guarnieri V, et al. Bone involvement in aldosteronism. J Bone Miner Res. 2012;27:2217–22.

    CAS  PubMed  Google Scholar 

  90. Loh HH, Yee A, Loh HS. Bone health among patients with primary aldosteronism: a systematic review and meta-analysis. Minerva Endocrinol. 2018. https://doi.org/10.23736/S0391-1977.18.02867-5.

  91. Notsu M, Yamauchi M, Yamamoto M, Nawata K, Sugimoto T. Primary aldosteronism as a risk factor for vertebral fracture. J Clin Endocrinol Metab. 2017;102:1237–43.

    PubMed  Google Scholar 

  92. Wu VC, Chang CH, Wang CY, Lin YH, Kao TW, Lin PC, et al. Risk of fracture in primary aldosteronism: a Population-Based Cohort Study. J Bone Miner Res. 2017;32:743–52.

    CAS  PubMed  Google Scholar 

  93. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    CAS  PubMed  Google Scholar 

  94. Carbone LD, Cross JD, Raza SH, Bush AJ, Sepanski RJ, Dhawan S, et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone. J Am Coll Cardiol. 2008;52:135–8.

    PubMed  Google Scholar 

  95. Brunaud L, Germain A, Zarnegar R, Rancier M, Alrasheedi S, Caillard C, et al. Serum aldosterone is correlated positively to parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism. Surgery. 2009;146:1035–41.

    PubMed  Google Scholar 

  96. Kovacs KA, Gay JD. Remission of primary hyperparathyroidism due to spontaneous infarction of a parathyroid adenoma. Case report and review of the literature. Medicine. 1998;77:398–402.

    CAS  PubMed  Google Scholar 

  97. Pacifici R, Perry HM 3rd, Shieber W, Biglieri E, Droke DM, Avioli LV. Adrenal responses to subtotal parathyroidectomy for primary hyperparathyroidism. Calcif Tissue Int. 1987;41:119–23.

    CAS  PubMed  Google Scholar 

  98. Bernini G, Moretti A, Lonzi S, Bendinelli C, Miccoli P, Salvetti A. Renin-angiotensin-aldosterone system in primary hyperparathyroidism before and after surgery. Metabolism. 1999;48:298–300.

    CAS  PubMed  Google Scholar 

  99. Salahudeen AK, Thomas TH, Sellars L, Tapster S, Keavey P, Farndon JR, et al. Hypertension and renal dysfunction in primary hyperparathyroidism: effect of parathyroidectomy. Clin Sci. 1989;76:289–96.

    CAS  PubMed  Google Scholar 

  100. Vaidya A, Brown JM, Williams JS. The renin-angiotensin-aldosterone system and calcium-regulatory hormones. J Hum Hypertens. 2015;29:515–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fischer E, Hannemann A, Rettig R, Lieb W, Nauck M, Pallauf A, et al. A high aldosterone to renin ratio is associated with high serum parathyroid hormone concentrations in the general population. J Clin Endocrinol Metab. 2014;99:965–71.

    CAS  PubMed  Google Scholar 

  102. Brown J, de Boer IH, Robinson-Cohen C, Siscovick DS, Kestenbaum B, Allison M, et al. Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015;100:490–9.

    CAS  PubMed  Google Scholar 

  103. Grant FD, Mandel SJ, Brown EM, Williams GH, Seely EW. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J Clin Endocrinol Metab. 1992;75:988–92.

    CAS  PubMed  Google Scholar 

  104. Brown JM, Williams JS, Luther JM, Garg R, Garza AE, Pojoga LH, et al. Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension. 2014;63:273–80.

    CAS  PubMed  Google Scholar 

  105. Maniero C, Fassina A, Guzzardo V, Lenzini L, Amadori G, Pelizzo MR, et al. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension. 2011;58:341–6.

    CAS  PubMed  Google Scholar 

  106. Hulter HN, Melby JC, Peterson JC, Cooke CR. Chronic continuous PTH infusion results in hypertension in normal subjects. J Clin Hypertens. 1986;2:360–70.

    CAS  PubMed  Google Scholar 

  107. Mazzocchi G, Aragona F, Malendowicz LK, Nussdorfer GG. PTH and PTH-related peptide enhance steroid secretion from human adrenocortical cells. Am J Physiol Endocrinol Metab. 2001;280:E209–13.

    CAS  PubMed  Google Scholar 

  108. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9:459–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Armanini D, Andrisani A, Ambrosini G, Dona G, Camozzi V, Bordin L, et al. Interrelationship between vitamin D insufficiency, calcium homeostasis, hyperaldosteronism, and autoimmunity. J Clin Hypertens. 2016;18:614–6.

    CAS  Google Scholar 

  110. Pilon C, Urbanet R, Williams TA, Maekawa T, Vettore S, Sirianni R, et al. 1alpha,25-Dihydroxyvitamin D(3) inhibits the human H295R cell proliferation by cell cycle arrest: a model for a protective role of vitamin D receptor against adrenocortical cancer. J Steroid Biochem Mol Biol. 2014;140:26–33.

    CAS  PubMed  Google Scholar 

  111. Lundqvist J, Wikvall K, Norlin M. Vitamin D-mediated regulation of CYP21A2 transcription—a novel mechanism for vitamin D action. Biochim Biophys Acta. 2012;1820:1553–9.

    CAS  PubMed  Google Scholar 

  112. Tirabassi G, Salvio G, Altieri B, Ronchi CL, Della Casa S, Pontecorvi A, et al. Adrenal disorders: is there any role for vitamin D? Rev Endocr Metab Disord. 2017;18:355–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HHL conceived and designed the work that led to the submission, acquired data, and interpreted the results. HHL drafted the manuscript while NS revised the manuscript. Both authors approved the final version and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Norlela Sukor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, H.H., Sukor, N. Associations between primary aldosteronism and diabetes, poor bone health, and sleep apnea—what do we know so far?. J Hum Hypertens 34, 5–15 (2020). https://doi.org/10.1038/s41371-019-0294-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0294-8

This article is cited by

Search

Quick links