Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis

Abstract

The antidiabetic effect of empagliflozin in patients with type 2 diabetes mellitus has been explored in several trials. We performed this meta-analysis determining the effects of empagliflozin on blood pressure, uric acid, estimated glomerular filtration rate, blood lipids, blood glucose, and body weight in patients with type 2 diabetes mellitus. We searched three electronic databases (Pubmed, Web of Science, and Cochrane Central) for all published articles evaluating the effects of empagliflozin on blood glucose or blood pressure in subjects with type 2 diabetes mellitus. Total 5781 patients were included in 12 randomized controlled trials with a follow-up of 28 ± 22 weeks. Empagliflozin 10 or 25 mg reduced systolic and diastolic blood pressure, uric acid, hemoglobin A1c, fasting plasma glucose, and body weight in patients with type 2 diabetes mellitus (all p < 0.001). There were no differences for changes of estimated glomerular filtration rate between empagliflozin 10 or 25 mg and placebo in these patients (all p > 0.05). In conclusion, empagliflozin reduces systolic and diastolic blood pressure, uric acid, hemoglobin A1c, fasting plasma glucose, and body weight. These data suggest the beneficial effects of empagliflozin on these cardiovascular risk factors in patients with type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Plosker GL. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74:807–24.

    Article  CAS  PubMed  Google Scholar 

  2. Plosker GL. Dapagliflozin: a review of its use in patients with type 2 diabetes. Drugs. 2014;74:2191–209.

    Article  CAS  PubMed  Google Scholar 

  3. Majewski C, Bakris GL. Blood pressure reduction: an added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015;38:429–30.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ, et al. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17:936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–8.

    Article  CAS  PubMed  Google Scholar 

  6. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36:3396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16:147–58.

    Article  CAS  PubMed  Google Scholar 

  8. Ross S, Thamer C, Cescutti J, Meinicke T, Woerle HJ, Broedl UC. Efficacy and safety of empagliflozin twice daily versus once daily in patients with type 2 diabetes inadequately controlled on metformin: a 16-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2015;17:699–702.

    Article  CAS  PubMed  Google Scholar 

  9. Roden M, Merker L, Christiansen AV, Roux F, Salsali A, Kim G, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: a double-blind extension of a Phase III randomized controlled trial. Cardiovasc Diabetol. 2015;14:154.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37:1650–9.

    Article  PubMed  Google Scholar 

  11. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37:1815–23.

    Article  CAS  PubMed  Google Scholar 

  12. Nishimura R, Tanaka Y, Koiwai K, Inoue K, Hach T, Salsali A, et al. Effect of empagliflozin monotherapy on postprandial glucose and 24-hour glucose variability in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, 4-week study. Cardiovasc Diabetol. 2015;14:11.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  14. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  PubMed  Google Scholar 

  16. Ingelfinger JR, Rosen CJ. Cardiovascular risk and sodium-glucose cotransporter 2 inhibition in type 2 diabetes. N Engl J Med. 2015;373:2178–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenstock J, Seman LJ, Jelaska A, Hantel S, Pinnetti S, Hach T, et al. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type 2 diabetes with mild hyperglycaemia. Diabetes Obes Metab. 2013;15:1154–60.

    Article  CAS  PubMed  Google Scholar 

  18. Kadowaki T, Haneda M, Inagaki N, Terauchi Y, Taniguchi A, Koiwai K, et al. Empagliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, 12-week, double-blind, placebo-controlled, phase II trial. Adv Ther. 2014;31:621–38.

    Article  CAS  PubMed  Google Scholar 

  19. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84.

    Article  CAS  PubMed  Google Scholar 

  20. Cherney DZ, Perkins BA, Soleymanlou N, Xiao F, Zimpelmann J, Woerle HJ, et al. Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int. 2014;86:1057–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zinman B, Inzucchi SE, Lachin JM, Wanner C, Fitchett D, Kohler S, et al. Empagliflozin and cerebrovascular events in patients with type 2 diabetes mellitus at high cardiovascular risk. Stroke. 2017;48:1218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaku K, Lee J, Mattheus M, Kaspers S, George J, Woerle HJ, et al. Empagliflozin and cardiovascular outcomes in asian patients with type 2 diabetes and established cardiovascular disease- results from EMPA-REG OUTCOME®. Circ J. 2017;81:227–34.

    Article  CAS  PubMed  Google Scholar 

  23. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:356–63.

    Article  CAS  PubMed  Google Scholar 

  24. Dentali F, Riva N, Crowther M, Turpie AG, Lip GY, Ageno W. Efficacy and safety of the novel oral anticoagulants in atrial fibrillation: a systematic review and meta-analysis of the literature. Circulation. 2012;126:2381–91.

    Article  CAS  PubMed  Google Scholar 

  25. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1–12.

    Article  CAS  PubMed  Google Scholar 

  26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  28. Oliva RV, Bakris GL. Blood pressure effects of sodium–glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sarafidis PA, Tsapas A. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2016;374:1092.

    Article  PubMed  Google Scholar 

  30. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016;68:1355–64.

    Article  CAS  PubMed  Google Scholar 

  31. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    Article  CAS  PubMed  Google Scholar 

  32. Mancia G, Grassi G, Borghi C. Hyperuricemia, urate deposition and the association with hypertension. Curr Med Res Opin. 2015;31(Suppl 2):15–19.

    Article  PubMed  Google Scholar 

  33. Saito Y, Nakayama T, Sugimoto K, Fujimoto Y, Kobayashi Y. Relation of lipid content of coronary plaque to level of serum uric acid. Am J Cardiol. 2015;116:1346–50.

    Article  CAS  PubMed  Google Scholar 

  34. Prasad M, Matteson EL, Herrmann J, Gulati R, Rihal CS, Lerman LO, et al. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women. Hypertension. 2017;69:236–42.

    Article  CAS  PubMed  Google Scholar 

  35. Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, et al. Uric acid in metabolic syndrome: from an innocent bystander to a central player. Eur J Intern Med. 2016;29:3–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85:962–71.

    Article  CAS  PubMed  Google Scholar 

  38. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–50.

    Article  CAS  PubMed  Google Scholar 

  39. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215–25.

    Article  CAS  PubMed  Google Scholar 

  40. Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13:119–26.

    Article  CAS  PubMed  Google Scholar 

  41. Imprialos K, Faselis C, Boutari C, Stavropoulos K, Athyros V, Karagiannis A, et al. SGLT-2 inhibitors and cardiovascular risk in diabetes mellitus: a comprehensive and critical review of the literature. Curr Pharm Des. 2017;23:1510–21.

    Article  CAS  PubMed  Google Scholar 

  42. Perrone-Filardi P, Avogaro A, Bonora E, Colivicchi F, Fioretto P, Maggioni AP, et al. Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol. 2017;241:450–6.

    Article  PubMed  Google Scholar 

  43. Scheen AJ. Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Res Clin Pract. 2016;121:204–14.

    Article  CAS  PubMed  Google Scholar 

  44. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59:1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dalan R. Sodium-glucose cotransporter-2 inhibition in type 2 diabetes mellitus: a review of large-scale cardiovascular outcome studies and possible mechanisms of benefit. Cardiol Rev. 2018;26:312–20.

    PubMed  Google Scholar 

  46. Vettor R, Inzucchi SE, Fioretto P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects. Diabetologia. 2017;60:395–8.

    Article  CAS  PubMed  Google Scholar 

  47. Cavaiola TS, Pettus J. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors. Diabetes Metab Syndr Obes. 2018;11:133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015;38:2344–53.

    Article  CAS  PubMed  Google Scholar 

  49. Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Med. 2017;130(6S):S30–S39.

    Article  CAS  PubMed  Google Scholar 

  50. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.

    Article  CAS  PubMed  Google Scholar 

  51. Sano M, Takei M, Shiraishi Y, Suzuki Y. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res. 2016;8:844–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paneni F, Lüscher TF. Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am J Cardiol. 2017;120(1S):S17–S27.

    Article  CAS  PubMed  Google Scholar 

  53. Muskiet MH, van Raalte DH, van Bommel EJ, Smits MM, Tonneijck L. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015;3:928–9.

    Article  PubMed  Google Scholar 

  54. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–6.

    Article  PubMed  Google Scholar 

  55. Ceriello A, Genovese S, Mannucci E, Gronda E. Glucagon and heart in type 2 diabetes: new perspectives. Cardiovasc Diabetol. 2016;15:123.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jones BJ, Tan T, Bloom SR. Minireview: glucagon in stress and energy homeostasis. Endocrinology. 2012;153:1049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lahnwong S, Chattipakorn SC, Chattipakorn N. Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors. Cardiovasc Diabetol. 2018;17:101.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17.

    Article  CAS  PubMed  Google Scholar 

  60. Daniele G, Xiong J, Solis-Herrera C, Merovci A, Eldor R, Tripathy D, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care. 2016;39:2036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jorgensen NB, Pedersen J, Vaag AA. EMPA-REG: glucose excretion and lipid mobilization - not storage - saves lives. J Diabetes Complicat. 2016;30:753.

    Article  Google Scholar 

  62. Pham SV, Chilton RJ. EMPA-REG OUTCOME: the cardiologist’s point of view. Am J Cardiol. 2017;120(1S):S53–S58.

    Article  CAS  PubMed  Google Scholar 

  63. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715:246–55.

    Article  CAS  PubMed  Google Scholar 

  64. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.

    Article  CAS  PubMed  Google Scholar 

  65. Shi X, Verma S, Yun J, Brand-Arzamendi K, Singh KK, Liu X, et al. Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem. 2017;433:97–102.

    Article  CAS  PubMed  Google Scholar 

  66. Packer M, Anker SD, Butler J, Filippatos G, Zannad F, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2:1025–9.

    Article  PubMed  Google Scholar 

  67. Baron KT, Macha S, Broedl UC, Nock V, Retlich S, Riggs M. Population pharmacokinetics and exposure-response (efficacy and safety/tolerability) of empagliflozin in patients with type 2 diabetes. Diabetes Ther. 2016;7:455–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilding J, Fernando K, Milne N, Evans M, Ali A, Bain S, et al. SGLT2 inhibitors in type 2 diabetes management: key evidence and implications for clinical practice. Diabetes Ther. 2018;9:1757–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barnett AH, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84.

    Article  CAS  PubMed  Google Scholar 

  70. Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet. 2015;54:691–708.

    Article  CAS  PubMed  Google Scholar 

  71. Riggs MM, Seman LJ, Staab A, MacGregor TR, Gillespie W, Gastonguay MR, et al. Exposure-response modelling for empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes. Br J Clin Pharmacol. 2014;78:1407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dardi I, Kouvatsos T, Jabbour SA. SGLT2 inhibitors. Biochem Pharmacol. 2016;101:27–39.

    Article  CAS  PubMed  Google Scholar 

  73. Macha S, Mattheus M, Halabi A, Pinnetti S, Woerle HJ, Broedl UC. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16:215–22.

    Article  CAS  PubMed  Google Scholar 

  74. Boehringer Ingelheim Limited. Empagliflozin: summary of product characteristics. 2018. https://www.medicines.org.uk/emc/product/5441. AccessedApril 2018.

  75. Sano M, Meguro S, Kawai T, Suzuki Y. Increased grip strength with sodium-glucose cotransporter 2. J Diabetes. 2016;8:736–7.

    Article  PubMed  Google Scholar 

  76. Bolinder J, Ljunggren Ö, Johansson L, Wilding J, Langkilde AM, Sjöström CD, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16:159–69.

    Article  CAS  PubMed  Google Scholar 

  77. Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: Clinical data and mechanism of action. J Diabetes Investig. 2014;5:265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, and Luoyang Central Hospital Affiliated to Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, H. & Dong, P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens 33, 327–339 (2019). https://doi.org/10.1038/s41371-018-0134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0134-2

This article is cited by

Search

Quick links