Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs)

Abstract

Background

Exposure assessment is critical for connecting environmental pollutants to health outcomes and evaluating impacts of interventions or environmental policies. Silicone wristbands (SWBs) show promise for multi-pollutant exposure assessment, including polycyclic aromatic hydrocarbons (PAHs), a ubiquitous class of toxic environmental pollutants.

Objective

To review published studies where SWBs were worn on the wrist for human environmental exposure assessments and evaluate the ability of SWBs to capture personal exposures, identify gaps which need to be addressed to implement this tool, and make recommendations for future studies to advance the field of exposure science through utilization of SWBs.

Methods

We performed a systematic search and a cited reference search in Scopus and extracted key study descriptions.

Results

Thirty-nine unique studies were identified, with analytes including PAHs, pesticides, flame retardants, and tobacco products. SWBs were shipped under ambient conditions without apparent analyte loss, indicating utility for global exposure and health studies. Nineteen articles detected a total of 60 PAHs in at least one SWB. Correlations with other concurrent biological and air measurements indicate the SWB captures exposure to flame retardants, tobacco products, and PAHs.

Significance

SWBs show promise as a simple-to-deploy tool to estimate environmental and occupational exposures to chemical mixtures, including PAHs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study selection process.

Similar content being viewed by others

References

  1. Weisskopf MG, Webster TF. Trade-offs of personal vs. more proxy exposure measures in environmental. Epidemiol Epidemiol. 2017;28:635–43. https://doi.org/10.1097/EDE.0000000000000686.

    Article  Google Scholar 

  2. Needham LL, Barr DB, Calafat AM. Characterizing children’s exposures: beyond NHANES. Neurotoxicology. 2005;26:547–53. https://doi.org/10.1016/j.neuro.2004.09.006.

    Article  PubMed  Google Scholar 

  3. Koehler KA, Peters TM. New methods for personal exposure monitoring for airborne particles. Curr Environ Health Rep. 2015;2:399–411. https://doi.org/10.1007/s40572-015-0070-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson KA, Points GL, Donald CE, Dixon HM, Scott RP, Wilson G, et al. Preparation and performance features of wristband samplers and considerations for chemical exposure assessment. J Exposure Sci Environ Epidemiol. 2017;27:551–9. https://doi.org/10.1038/jes.2017.9.

    Article  CAS  Google Scholar 

  5. O’Connell SG, Kincl LD, Anderson KA. Silicone wristbands as personal passive samplers. Environ Sci Technol. 2014;48:3327–35. https://doi.org/10.1021/es405022f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergmann AJ, North PE, Vasquez L, Bello H, del Carmen Gastañaga Ruiz M, Anderson KA. Multi-class chemical exposure in rural Peru using silicone wristbands. J Exposure Sci Environ Epidemiol. 2017;27:560–8. https://doi.org/10.1038/jes.2017.12.

    Article  CAS  Google Scholar 

  7. Quintana PJE, Hoh E, Dodder NG, Matt GE, Zakarian JM, Anderson KA, et al. Nicotine levels in silicone wristband samplers worn by children exposed to secondhand smoke and electronic cigarette vapor are highly correlated with child’s urinary cotinine. J Exposure Sci Environ Epidemiol. 2019;29:733–41. https://doi.org/10.1038/s41370-019-0116-7.

  8. Quintana PJE, Lopez-Galvez N, Dodder NG, Hoh E, Matt GE, Zakarian JM, et al. Nicotine, cotinine and tobacco-specific nitrosamines (TSNAs) measured in children’s silicone wristbands in relation to secondhand smoke and e-cigarette vapor exposure. Nicotine Tob Res.2021;23,3:592–9. https://doi.org/10.1093/ntr/ntaa140.

  9. Hammel SC, Phillips AL, Hoffman K, Stapleton HM. Evaluating the use of silicone wristbands to measure personal exposure to brominated flame retardants. Environ Sci Technol. 2018;52,20:11875–85. https://doi.org/10.1021/acs.est.8b03755.

  10. Hammel SC, Hoffman K, Phillips AL, Levasseur JL, Lorenzo AM, Webster TF, et al. Comparing the use of silicone wristbands, hand wipes, and dust to evaluate children’s exposure to flame retardants and plasticizers. Environ Sci Technol. 2020;54:4484–94. https://doi.org/10.1021/acs.est.9b07909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kile ML, Scott RP, O’Connell SG, Lipscomb S, MacDonald M, McClelland M, et al. Using silicone wristbands to evaluate preschool children’s exposure to flame retardants. Environ Res. 2016;147:365–72. https://doi.org/10.1016/j.envres.2016.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Travis SC, Aga DS, Queirolo EI, Olson JR, Daleiro M, Kordas K. Catching flame retardants and pesticides in silicone wristbands: evidence of exposure to current and legacy pollutants in Uruguayan children. Sci Total Environ. 2020;740:140136. https://doi.org/10.1016/j.scitotenv.2020.140136.

    Article  CAS  PubMed  Google Scholar 

  13. De Vecchi R, da Silveira Carvalho Ripper J, Roy D, Breton L, Germano Marciano A, Bernardo de Souza PM, et al. Using wearable devices for assessing the impacts of hair exposome in Brazil. Sci Rep. 2019;9:13357. https://doi.org/10.1038/s41598-019-49902-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dixon HM, Armstrong G, Barton M, Bergmann AJ, Bondy M, Halbleib ML, et al. Discovery of common chemical exposures across three continents using silicone wristbands. R Soc Open Sci. 2019;6:181836. https://doi.org/10.1098/rsos.181836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibson EA, Stapleton HM, Calero L, Holmes D, Burke K, Martinez R, et al. Differential exposure to organophosphate flame retardants in mother-child pairs. Chemosphere. 2018;219:567–73. https://doi.org/10.1016/j.chemosphere.2018.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipscomb ST, McClelland MM, MacDonald M, Cardenas A, Anderson KA, Kile ML. Cross-sectional study of social behaviors in preschool children and exposure to flame retardants. Environ Health. 2017;16:23 https://doi.org/10.1186/s12940-017-0224-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Romanak KA, Wang S, Stubbings WA, Hendryx M, Venier M, Salamova A. Analysis of brominated and chlorinated flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons in silicone wristbands used as personal passive samplers. J Chromatogr A. 2019;1588:41–47. https://doi.org/10.1016/j.chroma.2018.12.041.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Peris A, Rifat MR, Ahmed SI, Aich N, Nguyen LV, et al. Measuring exposure of e-waste dismantlers in Dhaka, Bangladesh to organophosphate esters and halogenated flame retardants using silicone wristbands and T-shirts. Sci Total Environ. 2020;720:137480. https://doi.org/10.1016/j.scitotenv.2020.137480.

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Romanak KA, Hendryx M, Salamova A, Venier M. Association between thyroid function and exposures to brominated and organophosphate flame retardants in rural central appalachia. Environ Sci Technol. 2020;54:325–34. https://doi.org/10.1021/acs.est.9b04892.

    Article  CAS  PubMed  Google Scholar 

  20. Reddam A, Tait G, Herkert N, Hammel SC, Stapleton HM, Volz DC. Longer commutes are associated with increased human exposure to tris(1,3-dichloro-2-propyl) phosphate. Environ Int. 2020;136:105499. https://doi.org/10.1016/j.envint.2020.105499.

  21. Craig JA, Ceballos DM, Fruh V, Petropoulos ZE, Allen JG, Calafat AM, et al. Exposure of nail salon workers to phthalates, Di(2-ethylhexyl) terephthalate, and organophosphate esters: a pilot study. Environ Sci Technol. 2019;53:14630–7. https://doi.org/10.1021/acs.est.9b02474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wise CF, Hammel SC, Herkert N, Ma J, Motsinger-Reif A, Stapleton HM, et al. Comparative exposure assessment using silicone passive samplers indicates that domestic dogs are sentinels to support human health research. Environ Sci Technol. 2020;54:7409–19. https://doi.org/10.1021/acs.est.9b06605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hammel SC, Hoffman K, Webster TF, Anderson KA, Stapleton HM. Measuring personal exposure to organophosphate flame retardants using silicone wristbands and hand wipes. Environ Sci Technol. 2016;50:4483–91. https://doi.org/10.1021/acs.est.6b00030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kassotis CD, Herkert NJ, Hammel SC, Hoffman K, Xia Q, Kullman SW, et al. Thyroid receptor antagonism of chemicals extracted from personal silicone wristbands within a papillary thyroid cancer pilot study. Environ Sci Technol. 2020;54:15296–312. https://doi.org/10.1021/acs.est.0c05972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen LV, Gravel S, Labrèche F, Bakhiyi B, Verner M-A, Zayed J, et al. Can silicone passive samplers be used for measuring exposure of e-waste workers to flame retardants? Environ Sci Technol. 2020;54:15277–86. https://doi.org/10.1021/acs.est.0c05240.

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, Romanak KA, Tarallo S, Francavilla A, Viviani M, Vineis P, et al. The use of silicone wristbands to evaluate personal exposure to semi-volatile organic chemicals (SVOCs) in France and Italy. Environ Pollut. 2020;267:115490. https://doi.org/10.1016/j.envpol.2020.115490.

    Article  CAS  PubMed  Google Scholar 

  27. Vidi P-A, Anderson KA, Chen H, Anderson R, Salvador-Moreno N, Mora DC, et al. Personal samplers of bioavailable pesticides integrated with a hair follicle assay of DNA damage to assess environmental exposures and their associated risks in children. Mutat Res/Genet Toxicol Environ Mutagenesis. 2017;822:27–33. https://doi.org/10.1016/j.mrgentox.2017.07.003.

    Article  CAS  Google Scholar 

  28. Aerts R, Joly L, Szternfeld P, Tsilikas K, De Cremer K, Castelain P, et al. Silicone wristband passive samplers yield highly individualized pesticide residue exposure profiles. Environ Sci Technol. 2018;52:298–307. https://doi.org/10.1021/acs.est.7b05039.

    Article  CAS  PubMed  Google Scholar 

  29. Donald CE, Scott RP, Blaustein KL, Halbleib ML, Sarr M, Jepson PC, et al. Silicone wristbands detect individuals’ pesticide exposures in West Africa. R Soc Open Sci. 2016;3:160433. https://doi.org/10.1098/rsos.160433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harley KG, Parra KL, Camacho J, Bradman A, Nolan JES, Lessard C, et al. Determinants of pesticide concentrations in silicone wristbands worn by Latina adolescent girls in a California farmworker community: the COSECHA youth participatory action study. Sci Total Environ. 2019;652:1022–9. https://doi.org/10.1016/j.scitotenv.2018.10.276.

    Article  CAS  PubMed  Google Scholar 

  31. Dixon HM, Scott RP, Holmes D, Calero L, Kincl LD, Waters KM, et al. Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods. Anal Bioanal Chem. 2018;410:3059–71. https://doi.org/10.1007/s00216-018-0992-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hendryx M, Wang S, Romanak KA, Salamova A, Venier M. Personal exposure to polycyclic aromatic hydrocarbons in Appalachian mining communities. Environ Pollut. 2020;257:113501. https://doi.org/10.1016/j.envpol.2019.113501.

    Article  CAS  PubMed  Google Scholar 

  33. Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott RP, Kincl L, et al. Environmental and individual PAH exposures near rural natural gas extraction. Environ Pollut. 2018;241:397–405. https://doi.org/10.1016/j.envpol.2018.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reche C, Viana M, van Drooge BL, Fernández FJ, Escribano M, Castaño-Vinyals G, et al. Athletes’ exposure to air pollution during World Athletics Relays: a pilot study. Sci Total Environ. 2020;717:137161. https://doi.org/10.1016/j.scitotenv.2020.137161.

    Article  CAS  PubMed  Google Scholar 

  35. Rohlman D, Dixon HM, Kincl L, Larkin A, Evoy R, Barton M, et al. Development of an environmental health tool linking chemical exposures, physical location and lung function. BMC Public Health. 2019;19:854. https://doi.org/10.1186/s12889-019-7217-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Romanak KA, Stubbings WA, Arrandale VH, Hendryx M, Diamond ML, et al. Silicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs). Environ Int. 2019;132:105104. https://doi.org/10.1016/j.envint.2019.105104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rohlman D, Donatuto J, Heidt M, Barton M, Campbell L, Anderson KA, et al. A case study describing a community-engaged approach for evaluating polycyclic aromatic hydrocarbon exposure in a native american community. Int J Environ Res Public Health. 2019;16:327. https://doi.org/10.3390/ijerph16030327.

    Article  CAS  PubMed Central  Google Scholar 

  38. Manzano CA, Dodder NG, Hoh E, Morales R. Patterns of personal exposure to urban pollutants using personal passive samplers and GC × GC/ToF–MS. Environ Sci Technol. 2019;53:614–24. https://doi.org/10.1021/acs.est.8b06220.

    Article  CAS  PubMed  Google Scholar 

  39. Baum JLR, Bakali U, Killawala C, Santiago KM, Dikici E, Kobetz EN, et al. Evaluation of silicone-based wristbands as passive sampling systems using PAHs as an exposure proxy for carcinogen monitoring in firefighters: evidence from the firefighter cancer initiative. Ecotoxicol Environ Saf. 2020;205:111100. https://doi.org/10.1016/j.ecoenv.2020.111100.

  40. Caban-Martinez AJ, Feliciano PL, Baum J, Bakali UF, Santiago KM, Solle NS, et al. Objective measurement of carcinogens among dominican republic firefighters using silicone-based wristbands. JCO Glob Oncol. 2020;6:15–15. https://doi.org/10.1200/go.20.90000.

    Article  Google Scholar 

  41. Doherty BT, Pearce JL, Anderson KA, Karagas MR, Romano ME. Assessment of multipollutant exposures during pregnancy using silicone wristbands. Front Public Health. 2020;8:547239. https://doi.org/10.3389/fpubh.2020.547239.

  42. Santiago KM, Louzado‐Feliciano P, Baum J, Bakali U, Caban‐Martinez AJ. Self‐reported and objectively measured occupational exposures, health, and safety concerns among fishermen: a cross‐sectional Fishing Industry Safety and Health (FISH) pilot study. Am J Ind Med. 2020;64(1):58–69. https://doi.org/10.1002/ajim.23198.

  43. Martin A, Margoum C, Jolivet A, Assoumani A, El Moujahid B, Randon J, et al. Calibration of silicone rubber rods as passive samplers for pesticides at two different flow velocities: Modeling of sampling rates under water boundary layer and polymer control. Environ Toxicol Chem. 2018;37:1208–18. https://doi.org/10.1002/etc.4050.

    Article  CAS  PubMed  Google Scholar 

  44. Ahrens L, Daneshvar A, Lau AE, Kreuger J. Characterization and application of passive samplers for monitoring of pesticides in water. J Vis Exp. 2016;114:54053. https://doi.org/10.3791/54053.

  45. Tromp PC, Beeltje H, Okeme JO, Vermeulen R, Pronk A, Diamond ML. Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design. Chemosphere. 2019;227:435–43. https://doi.org/10.1016/j.chemosphere.2019.04.043.

    Article  CAS  PubMed  Google Scholar 

  46. Seethapathy S, Górecki T. Applications of polydimethylsiloxane in analytical chemistry: a review. Anal Chim Acta. 2012;750:48–62. https://doi.org/10.1016/j.aca.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  47. Okeme JO, Nguyen LV, Lorenzo M, Dhal S, Pico Y, Arrandale VH, et al. Polydimethylsiloxane (silicone rubber) brooch as a personal passive air sampler for semi-volatile organic compounds. Chemosphere. 2018;208:1002–7. https://doi.org/10.1016/j.chemosphere.2018.05.196.

    Article  CAS  PubMed  Google Scholar 

  48. Wan Y, Diamond ML, Siegel JA. Elevated concentrations of semivolatile organic compounds in social housing multiunit residential building apartments. Environ Sci Technol Lett. 2020;7:191–7. https://doi.org/10.1021/acs.estlett.0c00068.

    Article  CAS  Google Scholar 

  49. Poutasse CM, Poston WSC, Jahnke SA, Haddock CK, Tidwell LG, Hoffman PD, et al. Discovery of firefighter chemical exposures using military-style silicone dog tags. Environ Int. 2020;142:105818. https://doi.org/10.1016/j.envint.2020.105818.

    Article  CAS  PubMed  Google Scholar 

  50. Poutasse CM, Herbstman JB, Peterson ME, Gordon J, Soboroff PH, Holmes D, et al. Silicone pet tags associate tris(1,3-dichloro-2-isopropyl) phosphate exposures with feline hyperthyroidism. Environ Sci Technol. 2019;53:9203–13. https://doi.org/10.1021/acs.est.9b02226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. ATSDR. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry: 1995. Atlanta, Georgia. https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf.

  52. WHO. WHO guidelines for indoor air quality: selected pollutants. World Health Organization, 2010. Bonn, Germany. https://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf.

  53. Perera F, Tang D, Whyatt R, Lederman SA, Jedrychowski W. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, The World Trade Center Area, Poland, and China. Cancer Epidemiol Prev Biomark. 2005;14:709–14. https://doi.org/10.1158/1055-9965.EPI-04-0457.

    Article  CAS  Google Scholar 

  54. Perera F, Viswanathan S, Whyatt R, Tang D, Miller RL, Rauh V. Children’s environmental health research—highlights from the Columbia Center for Children’s Environmental Health. Ann N Y Acad Sci. 2006;1076:15–28. https://doi.org/10.1196/annals.1371.018.

    Article  CAS  PubMed  Google Scholar 

  55. Perera, Virginia R,M,WR, Wei-Yann T, Deliang T, Diurka D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006;114:1287–92. https://doi.org/10.1289/ehp.9084.

    Article  CAS  Google Scholar 

  56. Perera F, Tang W-y, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE. 2009;4:1–14. https://doi.org/10.1371/journal.pone.0004488.

    Article  CAS  Google Scholar 

  57. Andersson JT, Achten C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Compd. 2015;35:330–54. https://doi.org/10.1080/10406638.2014.991042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Richter-Brockmann S, Achten C. Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo[c]fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere. 2018;200:495–503. https://doi.org/10.1016/j.chemosphere.2018.02.146.

    Article  CAS  PubMed  Google Scholar 

  59. Wooding M, Rohwer ER, Naudé Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GC×GC-TOFMS. Anal Bioanal Chem. 2020;412:5759–77. https://doi.org/10.1007/s00216-020-02799-y.

    Article  CAS  PubMed  Google Scholar 

  60. Bergmann A. Personal communication (July, 2020).

  61. Diamond M. Personal communication (June, 2020).

  62. Donald C. Personal communication (June, 2020).

  63. Viana M. Personal communication (June, 2020).

  64. Gibson EA, Stapleton HM, Calero L, Holmes D, Burke K, Martinez R, et al. Differential exposure to organophosphate flame retardants in mother-child pairs. Chemosphere. 2019;219:567–73. https://doi.org/10.1016/j.chemosphere.2018.12.008.

    Article  CAS  PubMed  Google Scholar 

  65. Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. Environ Sci: Process Impacts. 2020. https://doi.org/10.1039/D0EM00194E.

    Article  Google Scholar 

  66. Lin EZ, Esenther S, Mascelloni M, Irfan F, Godri Pollitt KJ. The fresh air wristband: a wearable air pollutant sampler. Environ Sci Technol Lett. 2020;7:308–14. https://doi.org/10.1021/acs.estlett.9b00800.

    Article  CAS  Google Scholar 

  67. Okeme JO, Parnis JM, Poole J, Diamond ML, Jantunen LM. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: rapid measurements and accurate modelling. Chemosphere. 2016;156:204–11. https://doi.org/10.1016/j.chemosphere.2016.04.094.

    Article  CAS  PubMed  Google Scholar 

  68. Mayer P, Vaes WHJ, Hermens JLM. Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: high partition coefficients and fluorescence microscopy images. Anal Chem. 2000;72:459–64. https://doi.org/10.1021/ac990948f.

    Article  CAS  PubMed  Google Scholar 

  69. Mitro SD, Dodson RE, Singla V, Adamkiewicz G, Elmi AF, Tilly MK, et al. Consumer product chemicals in indoor dust: a quantitative meta-analysis of U.S. studies. Environ Sci Technol. 2016;50:10661–72. https://doi.org/10.1021/acs.est.6b02023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eichler CMA, Hubal EAC, Xu Y, Cao J, Bi C, Weschler CJ, et al. Assessing human exposure to SVOCs in materials, products, and articles: a modular mechanistic framework. Environ Sci Technol. 2021;55:25–43. https://doi.org/10.1021/acs.est.0c02329.

    Article  CAS  PubMed  Google Scholar 

  71. Okeme JO, Yang C, Abdollahi A, Dhal S, Harris SA, Jantunen LM, et al. Passive air sampling of flame retardants and plasticizers in Canadian homes using PDMS, XAD-coated PDMS and PUF samplers. Environ Pollut. 2018;239:109–17. https://doi.org/10.1016/j.envpol.2018.03.103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all contacted article authors for providing additional study information.

Funding

Funding for this paper was provided by the Tobacco-Related Disease Research Program Grant #: 28PT-0079 (PI PJQ) as a student supplement to LH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope J. Quintana.

Ethics declarations

competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzai, L., Lopez Galvez, N., Hoh, E. et al. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). J Expo Sci Environ Epidemiol 32, 244–258 (2022). https://doi.org/10.1038/s41370-021-00359-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00359-9

Keywords

This article is cited by

Search

Quick links