Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiology and Biochemistry

Glucose metabolism disorder: a potential accomplice of SARS-CoV-2

Abstract

Globally, 265,713,467 confirmed cases of SARS-CoV-2 (CoV-2), including 5,260,888 deaths, have been reported by the WHO. It is important to study the mechanism of this infectious disease. A variety of evidences show the potential association between CoV-2 and glucose metabolism. Notably, people with type 2 diabetes mellitus (T2DM) and other metabolic complications were prone to have a higher risk of developing a more severe infection course than people who were metabolically normal. The correlations between glucose metabolism and CoV-2 progression have been widely revealed. This review will discuss the association between glucose metabolism disorders and CoV-2 progression, showing the promoting effect of diabetes and other diseases related to glucose metabolism disorders on the progression of CoV-2. We will further conclude the effects of key proteins and pathways in glucose metabolism regulation on CoV-2 progression and potential interventions by targeting glucose metabolism disorders for CoV-2 treatment. Therefore, this review will provide systematic insight into the treatment of CoV-2 from the perspective of glucose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The association of dysregulated glucose metabolism and severity of CoV-2 complications or deaths.
Fig. 2: The correlations between insulin resistance, diabetes, and CoV-2 severity and the markers in each pathway.
Fig. 3: The mechanism of glucose metabolism disturbance affecting SARS-CoV-2.

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Ozkan Oktay E, Tuncay S, Kaman T, Karasakal OF, Ozcan OO, Soylamis T, et al. An update comprehensive review on the status of COVID-19: vaccines, drugs, variants and neurological symptoms. Turk J Biol. 2021;454:342–57. https://doi.org/10.3906/biy-2106-23.

    Article  Google Scholar 

  2. Shen Q, Li J, Zhang Z, Guo S, Wang Q, An X, et al. COVID-19: systemic pathology and its implications for therapy. Int J Biol Sci. 2022;181:386–408. https://doi.org/10.7150/ijbs.65911.

    Article  Google Scholar 

  3. Touyz RM, Boyd MOE, Guzik T, Padmanabhan S, McCallum L, Delles C, et al. Cardiovascular and renal risk factors and complications associated with COVID-19. CJC Open. 2021;310:1257–72. https://doi.org/10.1016/j.cjco.2021.05.020.

    Article  Google Scholar 

  4. Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;27:572–85. https://doi.org/10.1038/s42255-020-0237-2.

    Article  Google Scholar 

  5. Juanola O, Martinez-Lopez S, Frances R, Gomez-Hurtado I. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors. Int J Environ Res Public Health. 2021;18:1810. https://doi.org/10.3390/ijerph18105227.

    Article  Google Scholar 

  6. Ealey KN, Phillips J, Sung HK. COVID-19 and obesity: fighting two pandemics with intermittent fasting. Trends Endocrinol Metab. 2021;329:706–20. https://doi.org/10.1016/j.tem.2021.06.004.

    Article  Google Scholar 

  7. Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab. 2012;16 Suppl 1:S27–36. https://doi.org/10.4103/2230-8210.94253.

    Article  PubMed  Google Scholar 

  8. Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;182:459–72. https://doi.org/10.7150/ijbs.59272.

    Article  Google Scholar 

  9. Moolamalla STR, Balasubramanian R, Chauhan R, Priyakumar UD, Vinod PK. Host metabolic reprogramming in response to SARS-CoV-2 infection: a systems biology approach. Microb Pathog. 2021;158:105114. https://doi.org/10.1016/j.micpath.2021.105114.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;1117:8322–36. https://doi.org/10.7150/thno.62378.

    Article  Google Scholar 

  11. Morris NL, Michael DN, Crotty KM, Chang SS, Yeligar SM. Alcohol-induced glycolytic shift in alveolar macrophages is mediated by hypoxia-inducible factor-1 alpha. Front Immunol. 2022;13:865492. https://doi.org/10.3389/fimmu.2022.865492.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu H, He Y, Ma J, Zhao Y, Liu Y, Sun L, et al. Inhibition of pyruvate dehydrogenase kinase1 by dicoumarol enhances the sensitivity of hepatocellular carcinoma cells to oxaliplatin via metabolic reprogramming. Int J Oncol. 2020;573:733–42. https://doi.org/10.3892/ijo.2020.5098.

    Article  Google Scholar 

  13. Thaker SK, Chapa T, Garcia G Jr., Gong D, Schmid EW, Arumugaswami V, et al. Differential metabolic reprogramming by Zika virus promotes cell death in human versus mosquito cells. Cell Metab. 2019;295:1206–16 e4. https://doi.org/10.1016/j.cmet.2019.01.024.

    Article  Google Scholar 

  14. Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - a systematic review. Life Sci. 2020;254:117788. https://doi.org/10.1016/j.lfs.2020.117788.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mullen PJ, Garcia G Jr, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun. 2021;121:1876. https://doi.org/10.1038/s41467-021-22166-4.

    Article  Google Scholar 

  16. Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and glutamine: SARS-CoV-2 triggered pathogenesis via metabolic reprograming of glutamine in host cells. Front Mol Biosci. 2020;7:627842. https://doi.org/10.3389/fmolb.2020.627842.

    Article  PubMed  Google Scholar 

  17. Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjarvi S, et al. Metabolic perturbation associated with COVID-19 disease severity and SARS-CoV-2 replication. Mol Cell Proteom. 2021;20:100159. https://doi.org/10.1016/j.mcpro.2021.100159.

    Article  Google Scholar 

  18. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;2513:228–48. https://doi.org/10.1002/path.5471.

    Article  Google Scholar 

  19. Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol. 2021;12:780768. https://doi.org/10.3389/fmicb.2021.780768.

    Article  PubMed  Google Scholar 

  20. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;175:259–60. https://doi.org/10.1038/s41569-020-0360-5.

    Article  Google Scholar 

  21. Santos AF, Povoa P, Paixao P, Mendonca A, Taborda-Barata L. Changes in glycolytic pathway in SARS-COV 2 infection and their importance in understanding the severity of COVID-19. Front Chem. 2021;9:685196. https://doi.org/10.3389/fchem.2021.685196.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ryu G, Shin HW. SARS-CoV-2 infection of airway epithelial cells. Immune Netw. 2021;211:e3. https://doi.org/10.4110/in.2021.21.e3.

    Article  Google Scholar 

  23. Ardestani A, Azizi Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct Target Ther. 2021;61:112. https://doi.org/10.1038/s41392-021-00532-4.

    Article  Google Scholar 

  24. Lian Q, Zhang K, Zhang Z, Duan F, Guo L, Luo W, et al. Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model. Nat Commun. 2022;131:2028. https://doi.org/10.1038/s41467-022-29731-5.

    Article  Google Scholar 

  25. Icard P, Lincet H, Wu Z, Coquerel A, Forgez P, Alifano M, et al. The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. Biochimie. 2021;180:169–77. https://doi.org/10.1016/j.biochi.2020.11.010.

    Article  CAS  PubMed  Google Scholar 

  26. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab. 2020;323:437–46 e5. https://doi.org/10.1016/j.cmet.2020.07.007.

    Article  Google Scholar 

  27. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. 2017;4823:426–31. https://doi.org/10.1016/j.bbrc.2016.11.088.

    Article  Google Scholar 

  28. Tarafdar A, Pula G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int J Mol Sci. 2018;19:1912. https://doi.org/10.3390/ijms19123824.

    Article  Google Scholar 

  29. Rajput S, Paliwal D, Naithani M, Kothari A, Meena K, Rana S. COVID-19 and gut microbiota: a potential connection. Indian J Clin Biochem. 2021;36:1–12. https://doi.org/10.1007/s12291-020-00948-9.

    Article  Google Scholar 

  30. Ricordi C, Pacifici F, Lanzoni G, Palamara AT, Garaci E, Della-Morte D. Dietary and protective factors to halt or mitigate progression of autoimmunity, COVID-19 and its associated metabolic diseases. Int J Mol Sci. 2021;22:226. https://doi.org/10.3390/ijms22063134.

    Article  Google Scholar 

  31. Meidaninikjeh S, Sabouni N, Marzouni HZ, Bengar S, Khalili A, Jafari R. Monocytes and macrophages in COVID-19: friends and foes. Life Sci. 2021;269:119010. https://doi.org/10.1016/j.lfs.2020.119010.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Corrao S, Pinelli K, Vacca M, Raspanti M, Argano C. Type 2 diabetes mellitus and COVID-19: a narrative review. Front Endocrinol. 2021;12:609470. 10.3389/fendo.2021.609470.

    Article  Google Scholar 

  33. Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes mellitus and COVID-19: associations and possible mechanisms. Int J Endocrinol. 2021;2021:7394378. https://doi.org/10.1155/2021/7394378.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021;911:786–98. https://doi.org/10.1016/S2213-8587(21)00244-8.

    Article  Google Scholar 

  35. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab. 2020;323:498–9. https://doi.org/10.1016/j.cmet.2020.07.015.

    Article  Google Scholar 

  36. Muller JA, Gross R, Conzelmann C, Kruger J, Merle U, Steinhart J, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;32:149–65. https://doi.org/10.1038/s42255-021-00347-1.

    Article  Google Scholar 

  37. Pamukcu B. Inflammation and thrombosis in patients with COVID-19: a prothrombotic and inflammatory disease caused by SARS coronavirus-2. Anatol J Cardiol. 2020;244:224–34. https://doi.org/10.14744/AnatolJCardiol.2020.56727.

    Article  Google Scholar 

  38. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;171:11–30. https://doi.org/10.1038/s41574-020-00435-4.

    Article  Google Scholar 

  39. Hoshiyama M, Li B, Yao J, Harada T, Morioka T, Oite T. Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron Exp Nephrol. 2003;952:e62–8. https://doi.org/10.1159/000073673.

    Article  Google Scholar 

  40. Lopez L, Sang PC, Tian Y, Sang Y. Dysregulated interferon response underlying severe COVID-19. Viruses. 2020;12:1212. https://doi.org/10.3390/v12121433.

    Article  Google Scholar 

  41. Calabretta E, Moraleda JM, Iacobelli M, Jara R, Vlodavsky I, O'Gorman P, et al. COVID-19-induced endotheliitis: emerging evidence and possible therapeutic strategies. Br J Haematol. 2021;1931:43–51. https://doi.org/10.1111/bjh.17240.

    Article  Google Scholar 

  42. Petek BJ, Moulson N, Baggish AL, Kliethermes SA, Patel MR, Churchill TW. et al. Prevalence and clinical implications of persistent or exertional cardiopulmonary symptoms following SARS-CoV-2 infection in 3597 collegiate athletes: a study from the Outcomes Registry for Cardiac Conditions in Athletes (ORCCA). Br J Sports Med. 2021;56:913–8. 10.1136/bjsports-2021-104644.

    Article  PubMed  Google Scholar 

  43. Rais N, Ahmad R, Ved A, Parveen K, Ishrat T, Prakash O, et al. Diabetes mellitus during the pandemic COVID-19: prevelance, pathophysiology, mechanism, and management: an updated overview. Curr Diabetes Rev. 2021;18:e120721194712. https://doi.org/10.2174/1573399817666210712160651.

    Article  Google Scholar 

  44. Coate KC. GP73 links SARS-CoV-2 infection with dysglycaemia. Nat Metab. 2022;4:9–10. https://doi.org/10.1038/s42255-021-00511-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jose A, Singh S, Roychoudhury A, Kholakiya Y, Arya S, Roychoudhury S. Current understanding in the pathophysiology of SARS-CoV-2-associated rhino-orbito-cerebral mucormycosis: a comprehensive review. J Maxillofac Oral Surg. 2021;20:1–8. https://doi.org/10.1007/s12663-021-01604-2.

    Article  Google Scholar 

  46. Chen X, Wang Y, Tao J, Shi Y, Gai X, Huang F, et al. mTORC1 up-regulates GP73 to promote proliferation and migration of hepatocellular carcinoma cells and growth of xenograft tumors in mice. Gastroenterology. 2015;1493:741–52 e14. https://doi.org/10.1053/j.gastro.2015.05.005.

    Article  Google Scholar 

  47. Liu Y, Zou Z, Zhu B, Hu Z, Zeng P. CXCL10 decreases GP73 expression in hepatoma cells at the early stage of hepatitis C virus (HCV) infection. Int J Mol Sci. 2013;1412:24230–41. https://doi.org/10.3390/ijms141224230.

    Article  Google Scholar 

  48. Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;2111:e13128. https://doi.org/10.1111/obr.13128.

    Article  Google Scholar 

  49. Vallis M, Glazer S. Protecting individuals living with overweight and obesity. Attitudes and concerns toward COVID-19 vaccination in Canada. Obesity. 2021;29:1128–1137. https://doi.org/10.1002/oby.23182.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Q, Zhang Y, Kang J, Chen Z, Peng M, Chen M, et al. Weakened humoral and cellular immune response to the inactivated COVID-19 vaccines in Chinese individuals with obesity/overweight. Genes Dis. 2023;102:608–17. https://doi.org/10.1016/j.gendis.2022.10.023.

    Article  Google Scholar 

  51. Glazer SA, Vallis M. Weight gain, weight management and medical care for individuals living with overweight and obesity during the COVID-19 pandemic (EPOCH study). Obes Sci Pract. 2022;85:556–68. https://doi.org/10.1002/osp4.591.

    Article  Google Scholar 

  52. Altmann DM, Boyton RJ. SARS-CoV-2 T cell immunity: specificity, function, durability, and role in protection. Sci Immunol. 2020;5:549. https://doi.org/10.1126/sciimmunol.abd6160.

    Article  Google Scholar 

  53. Lim S, Shin SM, Nam GE, Jung CH, Koo BK. Proper management of people with obesity during the COVID-19 pandemic. J Obes Metab Syndr. 2020;292:84–98. https://doi.org/10.7570/jomes20056.

    Article  Google Scholar 

  54. Boutin S, Hildebrand D, Boulant S, Kreuter M, Ruter J, Pallerla SR, et al. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci. 2021;7816:5953–76. https://doi.org/10.1007/s00018-021-03889-5.

    Article  Google Scholar 

  55. Mohamed Khosroshahi L, Rezaei N. Dysregulation of the immune response in coronavirus disease 2019. Cell Biol Int. 2021;454:702–7. https://doi.org/10.1002/cbin.11517.

    Article  Google Scholar 

  56. Krapic M, Kavazovic I, Wensveen FM. Immunological mechanisms of sickness behavior in viral infection. Viruses. 2021;13:1311. https://doi.org/10.3390/v13112245.

    Article  Google Scholar 

  57. Piatkiewicz P, Milek T, Bernat-Karpinska M, Ohams M, Czech A, Ciostek P. The dysfunction of NK cells in patients with type 2 diabetes and colon cancer. Arch Immunol Ther Exp. 2013;613:245–53. https://doi.org/10.1007/s00005-013-0222-5.

    Article  Google Scholar 

  58. Berrou J, Fougeray S, Venot M, Chardiny V, Gautier JF, Dulphy N, et al. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PLoS ONE. 2013;84:e62418. https://doi.org/10.1371/journal.pone.0062418.

    Article  Google Scholar 

  59. Bojkova D, Costa R, Reus P, Bechtel M, Jaboreck MC, Olmer R, et al. Targeting the pentose phosphate pathway for SARS-CoV-2 therapy. Metabolites. 2021;11:1110. https://doi.org/10.3390/metabo11100699.

    Article  Google Scholar 

  60. Young MJ, Clyne CD, Chapman KE. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J Endocrinol. 2020;2472:R45–R62. https://doi.org/10.1530/JOE-20-0260.

    Article  Google Scholar 

  61. Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol. 2021;2334:e13733. https://doi.org/10.1111/apha.13733.

    Article  Google Scholar 

  62. Montefusco L, Ben Nasr M, D'Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;36:774–85. https://doi.org/10.1038/s42255-021-00407-6.

    Article  Google Scholar 

  63. Lin CY, Wu CH, Hsu CY, Chen TH, Lin MS, Lin YS. et al. Reduced mortality associated with the use of metformin among patients with autoimmune diseases. Front Endocrinol. 2021;12:641635. 10.3389/fendo.2021.641635.

    Article  Google Scholar 

  64. Shang C, Zhuang X, Zhang H, Li Y, Zhu Y, Lu J, et al. Inhibition of autophagy suppresses SARS-CoV-2 replication and ameliorates pneumonia in hACE2 transgenic mice and xenografted human lung tissues. J Virol. 2021;9524:e0153721. https://doi.org/10.1128/JVI.01537-21.

    Article  Google Scholar 

  65. Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, et al. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther. 2021;61:317. https://doi.org/10.1038/s41392-021-00733-x.

    Article  Google Scholar 

  66. Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, et al. Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med. 2008;1782:168–79. https://doi.org/10.1164/rccm.200710-1602OC.

    Article  Google Scholar 

  67. Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants. 2020;9:97. https://doi.org/10.3390/antiox9070624.

    Article  Google Scholar 

  68. Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, et al. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat Commun. 2021;121:1618. https://doi.org/10.1038/s41467-021-21907-9.

    Article  Google Scholar 

  69. Wang F, Zhang J, Zhou G. 2-Deoxy-D-glucose impedes T cell-induced apoptosis of keratinocytes in oral lichen planus. J Cell Mol Med. 2021;2521:10257–67. https://doi.org/10.1111/jcmm.16964.

    Article  Google Scholar 

  70. Marin R, Pujol FH, Rojas D, Sobrevia L. SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2021;18683:166321. https://doi.org/10.1016/j.bbadis.2021.166321.

    Article  Google Scholar 

  71. Hoang BX, Shaw G, Fang W, Han B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. J Glob Antimicrob Resist. 2020;23:256–62. https://doi.org/10.1016/j.jgar.2020.09.025.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shi Z, Puyo CA. N-Acetylcysteine to combat COVID-19: an evidence review. Ther Clin Risk Manag. 2020;16:1047–55. https://doi.org/10.2147/TCRM.S273700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patocka J, Kuca K, Oleksak P, Nepovimova E, Valis M, Novotny M, et al. Rapamycin: drug repurposing in SARS-CoV-2 infection. Pharmaceuticals. 2021;14:143. https://doi.org/10.3390/ph14030217.

    Article  Google Scholar 

  74. Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, et al. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. The J. Clin. Investig. 2022;132:e160766. https://doi.org/10.1172/JCI160766.

    Article  CAS  PubMed  Google Scholar 

  75. Hoepel W, Chen HJ, Geyer CE, Allahverdiyeva S, Manz XD, de Taeye SW, et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med. 2021;13:13596. https://doi.org/10.1126/scitranslmed.abf8654.

    Article  Google Scholar 

  76. Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol. 2020;11:178. https://doi.org/10.3389/fendo.2020.00178.

    Article  Google Scholar 

  77. Goker H, Aladag Karakulak E, Demiroglu H, Ayaz Ceylan CM, Buyukasik Y, Inkaya AC, et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk J Med Sci. 2020;504:679–83. https://doi.org/10.3906/sag-2005-395.

    Article  Google Scholar 

  78. Chitadze G, Wehkamp U, Janssen O, Bruggemann M, Lettau M. The serine protease CD26/DPP4 in non-transformed and malignant T cells. Cancers. 2021;13:1323. https://doi.org/10.3390/cancers13235947.

    Article  Google Scholar 

  79. Rohrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 2015;6:386. https://doi.org/10.3389/fimmu.2015.00386.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xu C, Wang A, Marin M, Honnen W, Ramasamy S, Porter E, et al. Human defensins inhibit SARS-CoV-2 infection by blocking viral entry. Viruses. 2021;13:137. https://doi.org/10.3390/v13071246.

    Article  Google Scholar 

  81. Zhou L, Ivanov R II, Spolski R, Min K, Shenderov T. Egawa, et al. IL-6 programs T(H)−17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;89:967–74. https://doi.org/10.1038/ni1488.

    Article  Google Scholar 

  82. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 2001;151:43–58. https://doi.org/10.1096/fj.99-1003rev.

    Article  Google Scholar 

  83. Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci. 2021;178:2050–68. https://doi.org/10.7150/ijbs.59965.

    Article  Google Scholar 

  84. Brunton S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract. 2014;685:557–67. https://doi.org/10.1111/ijcp.12361.

    Article  Google Scholar 

  85. Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2018;3155:L834–L845. https://doi.org/10.1152/ajplung.00031.2018.

    Article  Google Scholar 

  86. Scheen AJ. DPP-4 inhibition and COVID-19: from initial concerns to recent expectations. Diabetes Metab. 2021;472:101213. https://doi.org/10.1016/j.diabet.2020.11.005.

    Article  Google Scholar 

  87. Dalan R, Ang LW, Tan WYT, Fong SW, Tay WC, Chan YH, et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Heart J Cardiovasc Pharmacother. 2021;73:e48–e51. https://doi.org/10.1093/ehjcvp/pvaa098.

    Article  Google Scholar 

  88. Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015;641:24–34. https://doi.org/10.1016/j.metabol.2014.08.004.

    Article  Google Scholar 

  89. Reidy SP, Weber J. Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2000;1253:285–98. https://doi.org/10.1016/s1095-6433(00)00159-8.

    Article  Google Scholar 

  90. Nouri-Keshtkar M, Taghizadeh S, Farhadi A, Ezaddoustdar A, Vesali S, Hosseini R, et al. Potential impact of diabetes and obesity on alveolar type 2 (AT2)-lipofibroblast (LIF) interactions after COVID-19 infection. Front Cell Dev Biol. 2021;9:676150. https://doi.org/10.3389/fcell.2021.676150.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang J, Xu Y, Zhang X, Wang S, Peng Z, Guo J, et al. Leptin correlates with monocytes activation and severe condition in COVID-19 patients. J Leukoc Biol. 2021;1101:9–20. https://doi.org/10.1002/JLB.5HI1020-704R.

    Article  Google Scholar 

  92. Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, et al. Camostat mesylate inhibits SARSCoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021;65:103255. https://doi.org/10.1016/j.ebiom.2021.103255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Singh B, Ryan H, Kredo T, Chaplin M, Fletcher T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. 2021;2:CD013587. https://doi.org/10.1002/14651858.CD013587.pub2.

    Article  PubMed  Google Scholar 

  94. Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA. Potential effect of hydroxychloroquine in diabetes mellitus: a systematic review on preclinical and clinical trial studies. J Diabetes Res. 2020;2020:5214751. https://doi.org/10.1155/2020/5214751.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mercado-Gomez M, Prieto-Fernandez E, Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M, et al. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Commun Biol. 2022;51:827. https://doi.org/10.1038/s42003-022-03789-9.

    Article  Google Scholar 

  96. Kalra S, Kalra B, Agrawal N, Unnikrishnan A. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011;31:2. https://doi.org/10.1186/1758-5996-3-2.

    Article  Google Scholar 

  97. Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;427:1048–59. https://doi.org/10.1345/aph.1K615.

    Article  Google Scholar 

  98. Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020;3686498:1499–504. https://doi.org/10.1126/science.abc1560.

    Article  Google Scholar 

  99. Li YN, Su Y. Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING. Biochem Biophys Res Commun. 2020;5262:381–8. https://doi.org/10.1016/j.bbrc.2020.03.034.

    Article  Google Scholar 

  100. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020;53:13–24. https://doi.org/10.1016/j.cytogfr.2020.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roskoski R Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res. 2016;111:784–803. https://doi.org/10.1016/j.phrs.2016.07.038.

    Article  CAS  PubMed  Google Scholar 

  102. Egbuonu F, Antonio FA, Edavalath M. Effect of inhaled corticosteroids on glycemic status. Open Respir Med J. 2014;8:101–5. https://doi.org/10.2174/1874306401408010101.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Crisan Dabija R, Antohe I, Trofor A, Antoniu SA. Corticosteroids in SARS-COV2 infection: certainties and uncertainties in clinical practice. Expert Rev Anti Infect Ther. 2021;1912:1553–62. https://doi.org/10.1080/14787210.2021.1933437.

    Article  Google Scholar 

  104. Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, et al. Lactoferrin against SARS-CoV-2: in vitro and in silico evidences. Front Pharmacol. 2021;12:666600. https://doi.org/10.3389/fphar.2021.666600.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82204389 & 31900502), the Natural Science Foundation of Henan (No. 222300420284), the Henan Medical Science and Technology Joint Building Program (No. LHGJ20200310 & No. LHGJ20190236 & No. LHGJ20190227).

Author information

Authors and Affiliations

Authors

Contributions

Yi Luan, Ying Luan, KDR and YY conceptualized and wrote the manuscript and created Figures. YY, and KDR contributed to the writing of the manuscript. Yi Luan, Ying Luan, HL, HH, BJ, BQ, and KDR reviewed and modified the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yang Yang, Bo Qin or Kaidi Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, Y., Luan, Y., He, H. et al. Glucose metabolism disorder: a potential accomplice of SARS-CoV-2. Int J Obes 47, 893–902 (2023). https://doi.org/10.1038/s41366-023-01352-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01352-y

This article is cited by

Search

Quick links