Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bariatric Surgery

Efficacy and safety of tirzepatide for treatment of overweight or obesity. A systematic review and meta-analysis

Abstract

Background

Recent studies suggest that tirzepatide, a dual glucose-dependent insulinotropic-peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA), has significant weight loss effects. This systematic review and meta-analysis aims to assess the efficacy and safety of tirzepatide for weight loss in patients with overweight or obesity.

Methods

Medline, Embase and Cochrane CENTRAL were searched for randomized controlled trials (RCTs) on tirzepatide’s weight loss efficacy for these patients. A single arm meta-analysis of proportions estimated primary outcomes, ≥5%, ≥10%, and ≥15% weight loss, and adverse events (AEs); while meta-analysis of means estimated secondary outcomes. Comparative meta-analysis was conducted between tirzepatide and control arms where mean differences and odds ratios were estimated for continuous and dichotomous outcomes respectively.

Results

RCTs included in this study revealed that among 5800 patients, 78.22% (95% CI: 72.15% to 83.73%), 55.60% (95% CI: 46.54% to 64.47%), 32.28% (95% CI: 23.17% to 42.12%) achieved ≥5%, ≥10%, and ≥15% weight loss, respectively. Tirzepatide 5 mg demonstrated weight loss superiority relative to placebo (MD: −12.47 kg, 95% CI: −13.94 kg to −11.00 kg) and semaglutide (n = 1409, MD: −1.90 kg, 95% CI: −2.97 kg to −0.83 kg) with dose-dependent increase for 10 mg and 15 mg doses. The comparison between tirzepatide and semaglutide was examined in the SURPASS-2 trial that was included in this systematic review. For AEs, there was increase odds of experiencing gastrointestinal AEs with tirzepatide compared to placebo, but no significant difference with semaglutide.

Conclusion

Tirzepatide has significant potential as a weight loss drug in patients with overweight and obesity, with little increase in AEs compared to other weight loss drugs. With its ability to concurrently target multiple aspects of metabolic syndrome, it should be considered as the next helm of weight loss therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow chart.
Fig. 2: Proportion of Patients that Achieved ≥5%, ≥10%, ≥15% weight loss by Dose of Tirzepatide.

Similar content being viewed by others

Data availability

All articles in this manuscript are available from Medline and Embase.

References

  1. Chong B, Kong G, Shankar K, Chew HSJ, Lin C, Goh R, et al. The global syndemic of metabolic diseases in the young adult population: a consortium of trends and projections from the Global Burden of Disease 2000–2019. Metabolism. 2023;141:155402. https://doi.org/10.1016/j.metabol.2023.155402.

    Article  CAS  PubMed  Google Scholar 

  2. Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35:414–28.e3. https://doi.org/10.1016/j.cmet.2023.02.003.

    Article  CAS  PubMed  Google Scholar 

  3. Organisation WH. Obesity and overweight fact sheet. World Health Organisation. Accessed 01/05/2022, 2022. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

  4. Kinlen D, Cody D, O’Shea D. Complications of obesity. QJM. 2018;111:437–43. https://doi.org/10.1093/qjmed/hcx152.

    Article  CAS  PubMed  Google Scholar 

  5. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American association of clinical endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22:1–203. https://doi.org/10.4158/EP161365.GL.

    Article  PubMed  Google Scholar 

  6. Muthiah MD, Cheng Han N, Sanyal AJ. A clinical overview of non-alcoholic fatty liver disease: a guide to diagnosis, the clinical features, and complications—what the non-specialist needs to know. Diabetes Obes Metab. 2022;24:3–14. https://doi.org/10.1111/dom.14521.

    Article  PubMed  Google Scholar 

  7. Chew NWS, Ng CH, Muthiah MD, Sanyal AJ. Comprehensive review and updates on holistic approach towards non-alcoholic fatty liver disease management with cardiovascular disease. Curr Atheroscler Rep. 2022; https://doi.org/10.1007/s11883-022-01027-5.

  8. Avila C, Holloway AC, Hahn MK, Morrison KM, Restivo M, Anglin R, et al. An overview of links between obesity and mental health. Curr Obes Rep. 2015;4:303–10.

    Article  PubMed  Google Scholar 

  9. Nyberg ST, Batty GD, Pentti J, Virtanen M, Alfredsson L, Fransson EI, et al. Obesity and loss of disease-free years owing to major non-communicable diseases: a multicohort study. Lancet Public Health. 2018;3:e490–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de la Iglesia R, Loria-Kohen V, Zulet MA, Martinez JA, Reglero G, de Molina AR. Dietary strategies implicated in the prevention and treatment of metabolic syndrome. Int J Mol Sci. 2016;17. https://doi.org/10.3390/ijms17111877.

  12. Lin C, Yeong TJJ, Lim WH, Ng CH, Chun EY, Chin YH, et al. Comparison of mechanistic pathways of bariatric surgery in patients with diabetes mellitus: a Bayesian network meta-analysis. Obesity (Silver Spring). 2022;30:1380–90. https://doi.org/10.1002/oby.23453.

    Article  CAS  PubMed  Google Scholar 

  13. Frías JP, Davies MJ, Rosenstock J, Manghi FCP, Lando LF, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. Clinical Trial, Phase III; Comparative Study; Equivalence Trial; Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, Non‐U.S. Gov’t. N Engl J Med. 2021;385:503–15. https://doi.org/10.1056/NEJMoa2107519.

    Article  PubMed  Google Scholar 

  14. Karagiannis T, Avgerinos I, Liakos A, Del Prato S, Matthews DR, Tsapas A, et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. 2022;65:1251–61. https://doi.org/10.1007/s00125-022-05715-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhagavathula AS, Vidyasagar K, Tesfaye W. Efficacy and safety of tirzepatide in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized phase II/III trials. Pharmaceuticals (Basel, Switzerland). 2021;14. https://doi.org/10.3390/ph14100991.

  16. Jung HN, Jung CH. The upcoming weekly tides (Semaglutide vs. Tirzepatide) against obesity: STEP or SURPASS? Review. J Obes Metab Syndr. 2022;31:28–36. https://doi.org/10.7570/JOMES22012.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kolkailah AA, Doukky R, Pelletier MP, Volgman AS, Kaneko T, Nabhan AF. Transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis in people with low surgical risk. Cochrane Database Syst Rev. 2019;12:Cd013319. https://doi.org/10.1002/14651858.CD013319.pub2.

    Article  PubMed  Google Scholar 

  19. Liao YB, Li YJ, Jun-Li L, Zhao ZG, Wei X, Tsauo JY, et al. Incidence, predictors and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: a systematic review and meta-analysis. Sci Rep. 2017;7:15014. https://doi.org/10.1038/s41598-017-15396-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63. https://doi.org/10.1016/S0140-6736(03)15268-3.

    Article  Google Scholar 

  21. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13. https://doi.org/10.2307/2331986.

    Article  Google Scholar 

  23. Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rucker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Res Synth Methods. 2019;10:476–83. https://doi.org/10.1002/jrsm.1348.

    Article  PubMed  PubMed Central  Google Scholar 

  24. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88. https://doi.org/10.1016/0197-2456(86)90046-2.

    Article  CAS  PubMed  Google Scholar 

  25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. Cochrane Handbook for Systematic Reviews of Interventions. 2008:243–96. https://training.cochrane.org/handbook/current/chapter-10.

  27. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. Doing Meta-Analysis With R: A Hands-On Guide. 1st ed. Chapman & Hall/CRC Press; 2021.

  28. Collaboration TC. Recommendations on testing for funnel plot asymmetry. Accessed 17 August 2022, 2022. https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm.

  29. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898.

    Article  PubMed  Google Scholar 

  30. Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. Journal: Article in Press. N Engl J Med. 2022; https://doi.org/10.1056/NEJMoa2206038.

  31. Ludvik B, Giorgino F, Jodar E, Frias JP, Lando LF.Brown K, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet (London, England). 2021;398:583–98. https://doi.org/10.1016/S0140-6736(21)01443-4. Comment in: Lancet. 2021; 398:560–561. PMID: 34370968 https://www.ncbi.nlm.nih.gov/pubmed/34370968.

  32. Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, Yang Z, Doupis J, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Journal Article; Clinical Trial Protocol. Lancet. 2021;398:1811–24. https://doi.org/10.1016/S0140-6736(21)02188-7.

    Article  PubMed  Google Scholar 

  33. Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14. https://doi.org/10.1016/j.molmet.2018.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kadowaki T, Chin R, Ozeki A, Imaoka T, Ogawa Y. Safety and efficacy of tirzepatide as an add-on to single oral antihyperglycaemic medication in patients with type 2 diabetes in Japan (SURPASS J-combo): a multicentre, randomised, open-label, parallel-group, phase 3 trial. Lancet Diabetes Endocr. 2022;10:634–44. https://doi.org/10.1016/s2213-8587(22)00187-5.

    Article  CAS  Google Scholar 

  35. Heise T, Mari A, DeVries JH, Urva S, Li J, Pratt EJ, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Clinical Trial, Phase I; Journal Article; Multicenter Study; Randomized Controlled Trial; Research Support, Non‐U.S. Gov’t. Lancet Diabetes Endocrinol. 2022;10:418–29. https://doi.org/10.1016/S2213-8587(22)00085-7.

    Article  CAS  PubMed  Google Scholar 

  36. O’Neil PM, Birkenfeld AL, McGowan B, Mosenzon O, Pedersen SD, Wharton S, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392:637–49. https://doi.org/10.1016/S0140-6736(18)31773-2.

    Article  PubMed  Google Scholar 

  37. Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: the SURPASS clinical trials. Rev Diabetes Ther. 2021;12:143–57. https://doi.org/10.1007/s13300-020-00981-0.

    Article  CAS  Google Scholar 

  38. Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392:2180–93. https://doi.org/10.1016/s0140-6736(18)32260-8.

    Article  CAS  PubMed  Google Scholar 

  39. Chin YH, Ng CH, Chew NW, Kong G, Lim WH, Tan DJH, et al. The placebo response rate and nocebo events in obesity pharmacological trials. A systematic review and meta-analysis. EClinicalMedicine. 2022;54:101685. https://doi.org/10.1016/j.eclinm.2022.101685.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17. https://doi.org/10.1007/978-3-319-48382-5_1.

    Article  CAS  PubMed  Google Scholar 

  41. Muthiah M, Ng CH, Chan KE, Fu CE, Lim WH, Tan DJH, et al. Type 2 diabetes mellitus in metabolic-associated fatty liver disease vs. type 2 diabetes mellitus non-alcoholic fatty liver disease: a longitudinal cohort analysis. Ann Hepatol. 2023;28:100762. https://doi.org/10.1016/j.aohep.2022.100762.

    Article  CAS  PubMed  Google Scholar 

  42. Bramante CT, Raatz S, Bomberg EM, Oberle MM, Ryder JR. Cardiovascular risks and benefits of medications used for weight loss. Front Endocrinol (Lausanne). 2019;10:883. https://doi.org/10.3389/fendo.2019.00883.

    Article  PubMed  Google Scholar 

  43. Salari N, Jafari S, Darvishi N, Valipour E, Mohammadi M, Mansouri K, et al. The best drug supplement for obesity treatment: a systematic review and network meta-analysis. Diabetol Metab Syndr. 2021;13:110. https://doi.org/10.1186/s13098-021-00733-5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vosoughi K, Atieh J, Khanna L, Khoshbin K, Prokop LJ, Davitkov P, et al. Association of glucagon-like peptide 1 analogs and agonists administered for obesity with weight loss and adverse events: a systematic review and network meta-analysis. EClinicalMedicine. 2021;42:101213. https://doi.org/10.1016/j.eclinm.2021.101213.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cacciottolo TM, Evans K. Research in brief: effective pharmacotherapy for the management of obesity. Clin Med (Lond). 2021;21:e517–8. https://doi.org/10.7861/clinmed.2021-0253.

    Article  PubMed  Google Scholar 

  46. Fornes A, Huff J, Pritchard RI, Godfrey M. Once-weekly semaglutide for weight management: a clinical review. J Pharm Technol. 2022;38:239–46. https://doi.org/10.1177/87551225221092681.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ng CH, Lin SY, Chin YH, Lee MH, Syn N, Goh XL, et al. Antidiabetic medications for type 2 diabetics with nonalcoholic fatty liver disease: evidence from a network meta-analysis of randomized controlled trials. Endocr Pract. 2022;28:223–30. https://doi.org/10.1016/j.eprac.2021.09.013.

    Article  PubMed  Google Scholar 

  48. Quek J, Chan KE, Wong ZY, Tan C, Tan B, Lim WH, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8:20–30. https://doi.org/10.1016/s2468-1253(22)00317-x.

    Article  PubMed  Google Scholar 

  49. Le MH, Yeo YH, Zou B, Barnet S, Henry L, Cheung R, et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin Mol Hepatol. 2022;28:841–50. https://doi.org/10.3350/cmh.2022.0239.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kang SH, Cho Y, Jeong SW, Kim SU, Lee JW, Korean NSG. From nonalcoholic fatty liver disease to metabolic-associated fatty liver disease: big wave or ripple? Clin Mol Hepatol. 2021;27:257–69. https://doi.org/10.3350/cmh.2021.0067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gastaldelli A, Cusi K, Fernandez Lando L, Bray R, Brouwers B, Rodriguez A. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10:393–406. https://doi.org/10.1016/S2213-8587(22)00070-5.

    Article  CAS  PubMed  Google Scholar 

  53. Roborel de Climens A, Pain E, Boss A, Shaunik A. Understanding reasons for treatment discontinuation, attitudes and education needs among people who discontinue type 2 diabetes treatment: results from an online patient survey in the USA and UK. Diabetes Ther. 2020;11:1873–81. https://doi.org/10.1007/s13300-020-00843-9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sattar N, McGuire DK, Pavo I, Weerakkody GJ, Nishiyama H, Wiese RJ, et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med. 2022;28:591–8. https://doi.org/10.1038/s41591-022-01707-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kong G, Chin YH, Chong B, Goh RSJ, Lim OZH, Ng CH, et al. Higher mortality in acute coronary syndrome patients without standard modifiable risk factors: results from a global meta-analysis of 1,285,722 patients. Int J Cardiol. 2023;371:432–40. https://doi.org/10.1016/j.ijcard.2022.09.062.

    Article  PubMed  Google Scholar 

  56. Vorsanger MH, Subramanyam P, Weintraub HS, Lamm SH, Underberg JA, Gianos E, et al. Cardiovascular Effects of the New Weight Loss Agents. J Am Coll Cardiol. 2016;68:849–59. https://doi.org/10.1016/j.jacc.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  57. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  CAS  PubMed  Google Scholar 

  58. Nct. A study of tirzepatide (LY3298176) compared with dulaglutide on major cardiovascular events in participants with type 2 diabetes (SURPASS-CVOT). https://www.clinicaltrials.gov/ct2/show/NCT04255433.

  59. A study of tirzepatide (LY3298176) in participants with heart failure with preserved ejection fraction and obesity (SUMMIT). https://ClinicalTrials.gov/show/NCT04847557.

  60. Willoughby D, Hewlings S, Kalman D. Body composition changes in weight loss: strategies and supplementation for maintaining lean body mass, a brief review. Nutrients. 2018;10. https://doi.org/10.3390/nu10121876.

Download references

Acknowledgements

All authors have made substantial contributions to all the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted. No writing assistance was obtained in the preparation of the manuscript. The manuscript, including related data, figures and tables has not been previously published and that the manuscript is not under consideration elsewhere.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—YHC, NWSC, MDM, MN, CHN. Data curation—BT, X-HP, YHC. Formal analysis—YHC, RSJG, CL, VVA, ECZL. Supervision—DYY, MYC, CMK, AM, MDM, MN, CHN, NWSC. Validation—YHC, NWSC, CHN, NWSC. Writing, original draft – BT, X-HP, YHC. Writing, review, and editing—BT, X-HP, YHC, HSJC, RSJG, CL, VVA, ECZL, KEC, GK, CEYO, HCC, DYY, MYC, CMK, AM, MDM, MN, CHN, NWSC. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Corresponding authors

Correspondence to Cheng Han Ng or Yip Han Chin.

Ethics declarations

Competing interests

MYC: Speaker’s fees and research grants Astra Zeneca, Abbott Technologies and Boston Scientific. MN: MN has been on the advisory board for 89BIO, Gilead, Intercept, Pfizer, Novo Nordisk, Blade, EchoSens, Fractyl, Terns, Siemens and Roche diagnostic; he has received research support from Allergan, BMS, Gilead, Galmed, Galectin, Genfit, Conatus, Enanta, Madrigal, Novartis, Pfizer, Shire, Viking and Zydus; he is a minor shareholder or has stocks in Anaetos, Rivus Pharma and Viking. All other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Pan, XH., Chew, H.S.J. et al. Efficacy and safety of tirzepatide for treatment of overweight or obesity. A systematic review and meta-analysis. Int J Obes 47, 677–685 (2023). https://doi.org/10.1038/s41366-023-01321-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01321-5

This article is cited by

Search

Quick links