Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro: a different effect on asunaprevir versus daclatasvir and beclabuvir

Abstract

Direct-acting antivirals, asunaprevir (ASV), daclatasvir (DCV), and beclabuvir (BCV) are known to be mainly metabolized by CYP3A enzymes; however, the differences in the detailed metabolic activities of CYP3A4 and CYP3A5 on these drugs are not well clarified. The aim of the present study was to elucidate the relative contributions of CYP3A4 and CYP3A5 to the metabolism of ASV, DCV, and BCV, as well as the effect of CYP3A5*3 genetic variant in vitro. The amount of each drug and their major metabolites were determined using LC-MS/MS. Recombinant CYP3As and CYP3A5*3-genotyped human liver microsomes (CYP3A5 expressers or non-expressers) were used for the determination of their metabolic activities. The contribution of CYP3A5 to ASV metabolism was considerable compared to that of CYP3A4. Consistently, ASV metabolic activity in CYP3A5 expressers was higher than those in CYP3A5 non-expresser. Moreover, CYP3A5 expression level was significantly correlated with ASV metabolism. In contrast, these observations were not found in DCV and BCV metabolism. To our knowledge, this is the first study to directly demonstrate the effect of CYP3A5*3 genetic variants on the metabolism of ASV. The findings of the present study may provide basic information on ASV, DCV, and BCV metabolisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology. 2015;61:77–87.

    PubMed  Google Scholar 

  2. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol. 2014;61:S45–57.

    PubMed  Google Scholar 

  3. Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol. 2013;11:482–96.

    CAS  PubMed  Google Scholar 

  4. Kumada H, Suzuki F, Suzuki Y, Toyota J, Karino Y, Chayama K, et al. Randomized comparison of daclatasvir+asunaprevir versus telaprevir+peginterferon/ribavirin in Japanese hepatitis C virus patients. J Gastroenterol Hepatol. 2016;31:14–22.

    CAS  PubMed  Google Scholar 

  5. Pasquinelli C, McPhee F, Eley T, Villegas C, Sandy K, Sheridan P, et al. Single- and multiple-ascending-dose studies of the NS3 protease inhibitor asunaprevir in subjects with or without chronic hepatitis C. Antimicrob Agents Chemother. 2012;56:1838–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chayama K, Takahashi S, Toyota J, Karino Y, Ikeda K, Ishikawa H, et al. Dual therapy with the nonstructural protein 5A inhibitor, daclatasvir, and the nonstructural protein 3 protease inhibitor, asunaprevir, in hepatitis C virus genotype 1b-infected null responders. Hepatology. 2012;55:742–8.

    CAS  PubMed  Google Scholar 

  7. Kumada H, Suzuki Y, Ikeda K, Toyota J, Karino Y, Chayama K, et al. Daclatasvir plus asunaprevir for chronic HCV genotype 1b infection. Hepatology. 2014;59:2083–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McPhee F, Hernandez D, Yu F, Ueland J, Monikowski A, Carifa A, et al. Resistance analysis of hepatitis C virus genotype 1 prior treatment null responders receiving daclatasvir and asunaprevir. Hepatology. 2013;58:902–11.

    CAS  PubMed  Google Scholar 

  9. McPhee F, Suzuki Y, Toyota J, Karino Y, Chayama K, Kawakami Y, et al. High sustained virologic response to daclatasvir plus asunaprevir in elderly and cirrhotic patients with hepatitis C virus genotype 1b without baseline NS5A polymorphisms. Adv Ther. 2015;32:637–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lemm JA, Liu M, Gentles RG, Ding M, Voss S, Pelosi LA, et al. Preclinical characterization of BMS-791325, an allosteric inhibitor of hepatitis C Virus NS5B polymerase. Antimicrob Agents Chemother. 2014;58:3485–95.

    PubMed  PubMed Central  Google Scholar 

  11. Pelosi LA, Voss S, Liu M, Gao M, Lemm JA. Effect on hepatitis C virus replication of combinations of direct-acting antivirals, including NS5A inhibitor daclatasvir. Antimicrob Agents Chemother. 2012;56:5230–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McPhee F, Hernandez D, Zhou N, Ueland J, Yu F, Vellucci V. Pooled analysis of HCV genotype 1 resistance-associated substitutions in NS5A, NS3 and NS5B pre-and post-treatment with 12 weeks of daclatasvir, asunaprevir and beclabuvir. Antivir Ther. 2018;23:53–66.

    CAS  PubMed  Google Scholar 

  13. Poordad F, Sievert W, Mollison L, Bennett M, Tse E, Bräu N, et al. Fixed-dose combination therapy with daclatasvir, asunaprevir, and beclabuvir for noncirrhotic patients with HCV genotype 1 infection. JAMA. 2015;313:1728–35.

    PubMed  Google Scholar 

  14. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. 2006;45:13–31.

    CAS  PubMed  Google Scholar 

  15. Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, et al. Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun. 2001;281:1349–55.

    CAS  PubMed  Google Scholar 

  16. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30:883–91.

    CAS  PubMed  Google Scholar 

  17. Niwa T, Murayama N, Emoto C, Yamazaki H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9:20–33.

    CAS  PubMed  Google Scholar 

  18. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos. 2006;34:836–47.

    CAS  PubMed  Google Scholar 

  19. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D, et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation. 2011;91:300–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Niioka T, Kagaya H, Saito M, Inoue T, Numakura K, Habuchi T, et al. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation. Int. J. Mol. Sci. 2015;16:1840–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu MH, Savas U, Johnson EF. The X-Ray crystal structure of the human mono-oxygenase cytochrome P450 3A5-ritonavir complex reveals active site differences between P450s 3A4 and 3A5. Mol. Pharm. 2018;93:14–24.

    CAS  Google Scholar 

  22. Gong J, Eley T, He B, Arora V, Philip T, Jiang H, et al. Characterization of ADME properties of [14C] asunaprevir (BMS-650032) in humans. Xenobiotica. 2016;46:52–64.

    CAS  PubMed  Google Scholar 

  23. Li W, Zhao W, Liu X, Huang X, Lopez OD, Leet JE, et al. Biotransformation of daclatasvir in vitro and in nonclinical species: formation of the main metabolite by pyrrolidine δ-oxidation and rearrangement. Drug Metab Dispos. 2016;44:809–20.

    CAS  PubMed  Google Scholar 

  24. Garimella T, Tao X, Sims K, Chang YT, Rana J, Myers E, et al. Effects of a fixed-dose co-formulation of daclatasvir, asunaprevir, and beclabuvir on the pharmacokinetics of a cocktail of cytochrome P450 and drug transporter substrates in healthy subjects. Drugs R D. 2018;18:55–65.

    CAS  PubMed  Google Scholar 

  25. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–91.

    CAS  PubMed  Google Scholar 

  26. Toyota J, Karino Y, Suzuki F, Ikeda F, Ido A, Tanaka K, et al. Daclatasvir/asunaprevir/beclabuvir fixed-dose combination in Japanese patients with HCV genotype 1 infection. J Gastroenterol. 2017;52:385–95.

    CAS  PubMed  Google Scholar 

  27. San SN, Matsumoto J, Saito Y, Koike M, Sakaue H, Kato Y, et al. Minor contribution of CYP3A5 to the metabolism of hepatitis C protease inhibitor paritaprevir in vitro. Xenobiotica. 2019;49:935–44.

    CAS  PubMed  Google Scholar 

  28. Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos. 2012;40:686–97.

    Google Scholar 

  29. Yuan L, Jiang H, Zheng N, Xia YQ, Ouyang Z, Zeng J, et al. A validated LC-MS/MS method for the simultaneous determination of BMS-791325, a hepatitis C virus NS5B RNA polymerase inhibitor, and its metabolite in plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2014;15(973C):1–8.

    Google Scholar 

  30. Houston JB, Kenworthy KE. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos. 2000;28:246–54.

    CAS  PubMed  Google Scholar 

  31. Uchida Y, Naiki K, Kouyama JI, Sugawara K, Nakao M, Motoya D, et al. Serum asunaprevir concentrations showing correlation with the extent of liver fibrosis as a factor inducing liver injuries in patients with genotype-1b hepatitis C virus receiving daclatasvir plus asunaprevir therapy. PLoS ONE. 2018;13:e0205600.

    PubMed  PubMed Central  Google Scholar 

  32. Akuta N, Sezaki H, Suzuki F, Kawamura Y, Hosaka T, Kobayashi M, et al. Relationships between serum asunaprevir concentration and alanine aminotransferase elevation during daclatasvir plus asunaprevir for chronic HCV genotype 1b infection. J Med Virol. 2016;88:506–11.

    CAS  PubMed  Google Scholar 

  33. Eley T, He B, Chang I, Colston E, Child M, Bedford W, et al. The effect of hepatic impairment on the pharmacokinetics of asunaprevir, an HCV NS3 protease inhibitor. Antivir Ther. 2015;20:29–37.

    CAS  PubMed  Google Scholar 

  34. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharm. 2002;62:162–72.

    CAS  Google Scholar 

  35. Poole RM. Daclatasvir + asunaprevir: first global approval. Drugs. 2014;74:1559–71.

    CAS  PubMed  Google Scholar 

  36. Mosure KW, Knipe JO, Browning M, Arora V, Shu YZ, Phillip T, et al. Preclinical pharmacokinetics and in vitro metabolism of asunaprevir (BMS-650032), a potent hepatitis C virus NS3 protease inhibitor. J Pharm Sci. 2015;104:2813–23.

    CAS  PubMed  Google Scholar 

  37. Dogra A, Bhatt S, Magotra A, Sharma A, Kotwal P, Gour A, et al. Intervention of curcumin on oral pharmacokinetics of daclatasvir in rat: a possible risk for long-term use. Phytother Res. 2018;32:1967–74.

    CAS  PubMed  Google Scholar 

  38. Harada N, Yoshizumi T, Ikegami T, Itoh S, Furusho N, Kato M, et al. Serum asunaprevir and daclatasvir concentrations and outcomes in patients with recurrent hepatitis C who have undergone living donor liver transplantation. Anticancer Res. 2018;38:5513–20.

    CAS  PubMed  Google Scholar 

  39. Bifano M, Adamczyk R, Hwang C, Kandoussi H, Marion A, Bertz RJ. An open-label investigation into drug–drug interactions between multiple doses of daclatasvir and single-dose cyclosporine or tacrolimus in healthy subjects. Clin Drug Investig. 2015;35:281–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Furihata T, Matsumoto S, Fu Z, Tsubota A, Sun Y, Matsumoto S, et al. Different interaction profiles of direct-acting anti-hepatitis C virus agents with human organic anion transporting polypeptides. Antimicrob Agents Chemother. 2014;58:4555–64.

    PubMed  PubMed Central  Google Scholar 

  41. Eley T, Han YH, Huang SP, He B, Li W, Bedford W, et al. Organic anion transporting polypeptide-mediated transport of, and inhibition by, asunaprevir, an inhibitor of hepatitis C virus NS3 protease. Clin Pharm Ther. 2015;97:159–66.

    CAS  Google Scholar 

  42. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34:45–78.

    CAS  PubMed  Google Scholar 

  43. Nakanishi T, Tamai I. Interaction of drug or food with drug transporters in intestine and liver. Curr Drug Metab. 2015;16:753–64.

    CAS  PubMed  Google Scholar 

  44. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58:1281–94.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs. Yasuyuki Momose (International University of Health and Welfare, IUHW), Kayoko Maezawa (IUHW), Takeshi Ito (IUHW), and Natsuko Sugiyama (IUHW) for providing useful suggestions. We thank Editage (www.editage.jp) for English language editing. This work was supported by the JSPS KAKENHI (Grant-in-Aid for Young Scientists (B), Grant Number: 16K18955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Matsumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, J., San, S.N., Fujiyoshi, M. et al. Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro: a different effect on asunaprevir versus daclatasvir and beclabuvir. J Hum Genet 65, 143–153 (2020). https://doi.org/10.1038/s10038-019-0685-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-019-0685-2

Search

Quick links