Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Critical role of the POT1 OB domain in maintaining genomic stability

Abstract

Oligonucleotide/oligosaccharide-binding (OB) domain-containing proteins have been identified as critical for telomere maintenance, DNA repair, transcription and other DNA metabolism processes. Protection of telomere 1 (POT1), a telomere binding protein, has an OB domain like single-strand binding protein (SSB1). In this issue of Oncogene, Gu et al. present evidence that POT1, like SSB1, is required to maintain genomic stability. This work, in conjunction with results from previous investigators, highlights the importance of POT1 in telomere metabolism. Inactivation of POT1 telomere protective functions in mouse models lacking p53 expression in the breast epithelium unleashes a torrent of DNA damage responses (DDRs) at the telomeres, culminating in karyotypic alterations with massive arrays of telomere fusions. Therefore, POT1 is not only required to promote telomere homeostasis, but also plays an essential role in maintaining a stable genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. de Lange T . Human telomeres are attached to the nuclear matrix. EMBO J 1992; 11: 717–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smilenov LB, Dhar S, Pandita TK . Altered telomere nuclear matrix interactions and nucleosomal periodicity in ataxia telangiectasia cells before and after ionizing radiation treatment. Mol Cell Biol 1999; 19: 6963–6971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greider CW . Telomere length regulation. Annu Rev Biochem 1996; 65: 337–365.

    Article  CAS  PubMed  Google Scholar 

  4. Pandita RK, Chow TT, Udayakumar D, Bain AL, Cubeddu L, Hunt CR et al. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs. Cancer Res 2015; 75: 858–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan SS, Chang S . Defending the end zone: studying the players involved in protecting chromosome ends. FEBS Lett 2010; 584: 3773–3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calado RT, Young NS . Telomere diseases. N Engl J Med 2009; 361: 2353–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hills M, Lansdorp PM . Short telomeres resulting from heritable mutations in the telomerase reverse transcriptase gene predispose for a variety of malignancies. Ann NY Acad Sci 2009; 1176: 178–190.

    Article  CAS  PubMed  Google Scholar 

  8. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001; 413: 432–435.

    Article  CAS  PubMed  Google Scholar 

  9. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I . Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004; 36: 447–449.

    Article  CAS  PubMed  Google Scholar 

  10. Alter BP, Giri N, Savage SA, Rosenberg PS . Cancer in dyskeratosis congenita. Blood 2009; 113: 6549–6557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406: 641–645.

    Article  CAS  PubMed  Google Scholar 

  12. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP . TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 2008; 82: 501–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I . TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 2008; 112: 3594–3600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palm W, de Lange T . How shelterin protects mammalian telomeres. Annu Rev Genet 2008; 42: 301–334.

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 2004; 6: 673–680.

    Article  CAS  PubMed  Google Scholar 

  16. Baumann P, Cech TR . Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292: 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  17. He H, Multani AS, Cosme-Blanco W, Tahara H, Ma J, Pathak S et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 2006; 25: 5180–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hockemeyer D, Daniels JP, Takai H, de Lange T . Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 2006; 126: 63–77.

    Article  CAS  PubMed  Google Scholar 

  19. Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 2006; 126: 49–62.

    Article  CAS  PubMed  Google Scholar 

  20. Lei M, Podell ER, Cech TR . Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 2004; 11: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  21. Loayza D, De Lange T . POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003; 423: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  22. Shakirov EV, Surovtseva YV, Osbun N, Shippen DE . The Arabidopsis Pot1 and Pot2 proteins function in telomere length homeostasis and chromosome end protection. Mol Cell Biol 2005; 25: 7725–7733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He H, Wang Y, Guo X, Ramchandani S, Ma J, Shen MF et al. Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol Cell Biol 2009; 29: 229–240.

    Article  CAS  PubMed  Google Scholar 

  24. Veldman T, Etheridge KT, Counter CM . Loss of hPot1 function leads to telomere instability and a cut-like phenotype. Curr Biol 2004; 14: 2264–2270.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Zheng YL, Harris CC . POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol 2005; 25: 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maser RS, DePinho RA . Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst) 2004; 3: 979–988.

    Article  CAS  Google Scholar 

  27. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 2007; 447: 966–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97: 527–538.

    Article  CAS  PubMed  Google Scholar 

  29. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T . p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  30. Pandita TK . ATM function and telomere stability. Oncogene 2002; 21: 611–618.

    Article  CAS  PubMed  Google Scholar 

  31. Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T . Engineered telomere degradation models dyskeratosis congenita. Genes Dev 2008; 22: 1773–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Shen MF, Chang S . Essential roles for Pot1b in HSC self-renewal and survival. Blood 2011; 118: 6068–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandita TK, Richardson C . Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 2009; 37: 1363–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scott SP, Pandita TK . The cellular control of DNA double-strand breaks. J Cell Biochem 2006; 99: 1463–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Attwooll CL, Akpinar M, Petrini JH . The mre11 complex and the response to dysfunctional telomeres. Mol Cell Biol 2009; 29: 5540–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng Y, Guo X, Ferguson DO, Chang S . Multiple roles for MRE11 at uncapped telomeres. Nature 2009; 460: 914–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dimitrova N, de Lange T . Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Mol Cell Biol 2009; 29: 5552–5563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo X, Deng Y, Lin Y, Cosme-Blanco W, Chan S, He H et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 2007; 26: 4709–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denchi EL, de Lange T . Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  40. Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 2010; 29: 2598–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sfeir A, de Lange T . Removal of shelterin reveals the telomere end-protection problem. Science 2012; 336: 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pandita TK, Westphal CH, Anger M, Sawant SG, Geard CR, Pandita RK et al. Atm inactivation results in aberrant telomere clustering during meiotic prophase. Mol Cell Biol 1999; 19: 5096–5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bainbridge MN, Armstrong GN, Gramatges MM, Bertuch AA, Jhangiani SN, Doddapaneni H et al. Germline mutations in shelterin complex genes are associated with familial glioma. J Natl Cancer Inst 2015; 107: 384.

    Article  PubMed  Google Scholar 

  44. Calvete O, Martinez P, Garcia-Pavia P, Benitez-Buelga C, Paumard-Hernandez B, Fernandez V et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nat Commun 2015; 6: 8383.

    Article  CAS  PubMed  Google Scholar 

  45. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z et al. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 2014; 46: 478–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 2014; 46: 482–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A, Villamor N et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 2013; 45: 526–530.

    Article  CAS  PubMed  Google Scholar 

  48. Flynn RL, Centore RC, O'Sullivan RJ, Rai R, Tse A, Songyang Z et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 2011; 471: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research in the author’s laboratory is funded by the National Institute of Health Grants CA129537 and GM109768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T K Pandita.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandita, T. Critical role of the POT1 OB domain in maintaining genomic stability. Oncogene 36, 1908–1910 (2017). https://doi.org/10.1038/onc.2016.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.365

Search

Quick links