Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Far upstream element binding protein 1: a commander of transcription, translation and beyond

Abstract

The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c -Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27Kip and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. de Nigris F, Sica V, Herrmann J, Condorelli G, Chade AR, Tajana G et al. c-Myc oncoprotein: cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2003; 2: 325–328.

    CAS  Google Scholar 

  2. Hoffman B, Liebermann DA . Apoptotic signaling by c-MYC. Oncogene 2008; 27: 6462–6472.

    CAS  Google Scholar 

  3. Levens D . Disentangling the MYC web. Proc Natl Acad Sci USA 2002; 99: 5757–5759.

    CAS  Google Scholar 

  4. Pelengaris S, Khan M, Evan G . c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002; 2: 764–776.

    CAS  Google Scholar 

  5. Avigan MI, Strober B, Levens D . A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J Biol Chem 1990; 265: 18538–18545.

    CAS  Google Scholar 

  6. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev 1994; 8: 465–480.

    CAS  Google Scholar 

  7. Liu J, Kouzine F, Nie Z, Chung HJ, Elisha-Feil Z, Weber A et al. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 2006; 25: 2119–2130.

    CAS  Google Scholar 

  8. Chien HL, Liao CL, Lin YL . FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol 2011; 85: 4698–4706.

    CAS  Google Scholar 

  9. Irwin N, Baekelandt V, Goritchenko L, Benowitz LI . Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Nucleic Acids Res 1997; 25: 1281–1288.

    CAS  Google Scholar 

  10. Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD . Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 2011; 30: 77–86.

    CAS  Google Scholar 

  11. Zheng Y, Miskimins WK . Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. Int J Biochem Cell Biol 2011; 43: 1641–1648.

    CAS  Google Scholar 

  12. Matsushita K, Tomonaga T, Shimada H, Shioya A, Higashi M, Matsubara H et al. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis. Cancer Res 2006; 66: 1409–1417.

    CAS  Google Scholar 

  13. Niforou KM, Anagnostopoulos AK, Vougas K, Kittas C, Gorgoulis VG, Tsangaris GT . The proteome profile of the human osteosarcoma U2OS cell line. Cancer Genomics Proteomics 2008; 5: 63–78.

    CAS  Google Scholar 

  14. Zhang L, Yang H, Xu J . Gene expression significance in personalized medicine of non-small-cell lung cancer and gene expression analyzing platforms. Curr Drug Metab 2011; 12: 455–459.

    Google Scholar 

  15. Zubaidah RM, Tan GS, Tan SB, Lim SG, Lin Q, Chung MC . 2-D DIGE profiling of hepatocellular carcinoma tissues identified isoforms of far upstream binding protein (FUBP) as novel candidates in liver carcinogenesis. Proteomics 2008; 8: 5086–5096.

    CAS  Google Scholar 

  16. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011; 333: 1453–1455.

    CAS  Google Scholar 

  17. Malz M, Weber A, Singer S, Riehmer V, Bissinger M, Riener MO et al. Overexpression of far upstream element binding proteins: a mechanism regulating proliferation and migration in liver cancer cells. Hepatology 2009; 50: 1130–1139.

    CAS  Google Scholar 

  18. Matsushita K, Tomonaga T, Kajiwara T, Shimada H, Itoga S, Hiwasa T et al. c-myc suppressor FBP-interacting repressor for cancer diagnosis and therapy. Front Biosci 2009; 14: 3401–3408.

    CAS  Google Scholar 

  19. Rabenhorst U, Beinoraviciute-Kellner R, Brezniceanu ML, Joos S, Devens F, Lichter P et al. Overexpression of the far upstream element binding protein 1 in hepatocellular carcinoma is required for tumor growth. Hepatology 2009; 50: 1121–1129.

    CAS  Google Scholar 

  20. Kim MJ, Park BJ, Kang YS, Kim HJ, Park JH, Kang JW et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat Genet 2003; 34: 330–336.

    CAS  Google Scholar 

  21. Williams BY, Hamilton SL, Sarkar HK . The survival motor neuron protein interacts with the transactivator FUSE binding protein from human fetal brain. FEBS Lett 2000; 470: 207–210.

    CAS  Google Scholar 

  22. Bentley DL, Groudine M . A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 1986; 321: 702–706.

    CAS  Google Scholar 

  23. Westin EH, Wong-Staal F, Gelmann EP, Dalla-Favera R, Papas TS, Lautenberger JA et al. Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc Natl Acad Sci USA 1982; 79: 2490–2494.

    CAS  Google Scholar 

  24. Bazar L, Harris V, Sunitha I, Hartmann D, Avigan M . A transactivator of c-myc is coordinately regulated with the proto-oncogene during cellular growth. Oncogene 1995; 10: 2229–2238.

    CAS  Google Scholar 

  25. Davis-Smyth T, Duncan RC, Zheng T, Michelotti G, Levens D . The far upstream element-binding proteins comprise an ancient family of single-strand DNA-binding transactivators. J Biol Chem 1996; 271: 31679–31687.

    CAS  Google Scholar 

  26. Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D . Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 1996; 16: 2656–2669.

    CAS  Google Scholar 

  27. Duncan R, Collins I, Tomonaga T, Zhang T, Levens D . A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP. Mol Cell Biol 1996; 16: 2274–2282.

    CAS  Google Scholar 

  28. Valverde R, Edwards L, Regan L . Structure and function of KH domains. FEBS J 2008; 275: 2712–2726.

    CAS  Google Scholar 

  29. Braddock DT, Baber JL, Levens D, Clore GM . Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J 2002; 21: 3476–3485.

    CAS  Google Scholar 

  30. He L, Liu J, Collins I, Sanford S, O’Connell B, Benham CJ et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J 2000; 19: 1034–1044.

    CAS  Google Scholar 

  31. Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D et al. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001; 104: 353–363.

    CAS  Google Scholar 

  32. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004; 36: 714–719.

    CAS  Google Scholar 

  33. Tuteja N, Rahman K, Tuteja R, Falaschi A . Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells. Nucleic Acids Res 1993; 21: 2323–2329.

    CAS  Google Scholar 

  34. Vindigni A, Ochem A, Triolo G, Falaschi A . Identification of human DNA helicase V with the far upstream element-binding protein. Nucleic Acids Res 2001; 29: 1061–1067.

    CAS  Google Scholar 

  35. Costa M, Ochem A, Staub A, Falaschi A . Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res 1999; 27: 817–821.

    CAS  Google Scholar 

  36. Bouchireb N, Clark MS . Human FUSE binding protein 3 gene (FBP3). Map position 9q33-34.1. Chromosome Res 1999; 7: 577.

    CAS  Google Scholar 

  37. Gherzi R, Chen CY, Trabucchi M, Ramos A, Briata P . The role of KSRP in mRNA decay and microRNA precursor maturation. Wiley Interdiscip Rev RNA 2010; 1: 230–239.

    CAS  Google Scholar 

  38. Danckwardt S, Gantzert AS, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M et al. p38 MAPK controls prothrombin expression by regulated RNA 3' end processing. Mol Cell 2011; 41: 298–310.

    CAS  Google Scholar 

  39. Braddock DT, Louis JM, Baber JL, Levens D, Clore GM . Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 2002; 415: 1051–1056.

    CAS  Google Scholar 

  40. Benjamin LR, Chung HJ, Sanford S, Kouzine F, Liu J, Levens D . Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein. Proc Natl Acad Sci USA 2008; 105: 18296–18301.

    CAS  Google Scholar 

  41. Liu J, He L, Collins I, Ge H, Libutti D, Li J et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 2000; 5: 331–341.

    CAS  Google Scholar 

  42. Corsini L, Hothorn M, Stier G, Rybin V, Scheffzek K, Gibson TJ et al. Dimerization and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. J Biol Chem 2009; 284: 630–639.

    CAS  Google Scholar 

  43. Page-McCaw PS, Amonlirdviman K, Sharp PA . PUF60: a novel U2AF65-related splicing activity. RNA 1999; 5: 1548–1560.

    CAS  Google Scholar 

  44. Chung HJ, Liu J, Dundr M, Nie Z, Sanford S, Levens D . FBPs are calibrated molecular tools to adjust gene expression. Mol Cell Biol 2006; 26: 6584–6597.

    CAS  Google Scholar 

  45. Hsiao HH, Nath A, Lin CY, Folta-Stogniew EJ, Rhoades E, Braddock DT . Quantitative characterization of the interactions among c-myc transcriptional regulators FUSE, FBP, and FIR. Biochemistry 2010; 49: 4620–4634.

    CAS  Google Scholar 

  46. Weber A, Liu J, Collins I, Levens D . TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol Cell Biol 2005; 25: 147–161.

    CAS  Google Scholar 

  47. Bazar L, Meighen D, Harris V, Duncan R, Levens D, Avigan M . Targeted melting and binding of a DNA regulatory element by a transactivator of c-myc. J Biol Chem 1995; 270: 8241–8248.

    CAS  Google Scholar 

  48. Krumm A, Meulia T, Brunvand M, Groudine M . The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 1992; 6: 2201–2213.

    CAS  Google Scholar 

  49. Levens D . How the c-myc promoter works and why it sometimes does not. J Natl Cancer Inst Monogr 2008. 41–43.

    Google Scholar 

  50. Liu J, Chung HJ, Vogt M, Jin Y, Malide D, He L et al. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J 2011; 30: 846–858.

    CAS  Google Scholar 

  51. Kusik BW, Hammond DR, Udvadia AJ . Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 2010; 239: 482–495.

    CAS  Google Scholar 

  52. Nishizawa K, Okamoto H . Mutation analysis of the role for the carboxy-terminus encoding region in NGF-induced stabilization of GAP-43 mRNA. Biochem Biophys Res Commun 1994; 205: 1380–1385.

    CAS  Google Scholar 

  53. Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y et al. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 2000; 20: 760–769.

    CAS  Google Scholar 

  54. Dean JL, Sully G, Clark AR, Saklatvala J . The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 2004; 16: 1113–1121.

    CAS  Google Scholar 

  55. Sully G, Dean JL, Wait R, Rawlinson L, Santalucia T, Saklatvala J et al. Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Biochem J 2004; 377: 629–639.

    CAS  Google Scholar 

  56. Colombo E, Alcalay M, Pelicci PG . Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30: 2595–2609.

    CAS  Google Scholar 

  57. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    CAS  Google Scholar 

  58. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 2008; 111: 3859–3862.

    CAS  Google Scholar 

  59. Zhang Z, Harris D, Pandey VN . The FUSE binding protein is a cellular factor required for efficient replication of hepatitis C virus. J Virol 2008; 82: 5761–5773.

    CAS  Google Scholar 

  60. Jang M, Park BC, Kang S, Chi SW, Cho S, Chung SJ et al. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene 2009; 28: 1529–1536.

    CAS  Google Scholar 

  61. Huang PN, Lin JY, Locker N, Kung YA, Hung CT, Huang HI et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Res 2011; 39: 16.

    Google Scholar 

  62. Balvay L, Soto RR, Ricci EP, Decimo D, Ohlmann T . Structural and functional diversity of viral IRESes. Biochim Biophys Acta 2009; 1789: 542–557.

    CAS  Google Scholar 

  63. He L, Weber A, Levens D . Nuclear targeting determinants of the far upstream element binding protein, a c-myc transcription factor. Nucleic Acids Res 2000; 28: 4558–4565.

    CAS  Google Scholar 

  64. Fukumoto M, Sekimoto T, Yoneda Y . Proteomic analysis of importin alpha-interacting proteins in adult mouse brain. Cell Struct Funct 2011; 36: 57–67.

    CAS  Google Scholar 

  65. Buchan JR, Parker R . Eukaryotic stress granules: the ins and outs of translation. Mol Cell 2009; 36: 932–941.

    CAS  Google Scholar 

  66. Thiede B, Dimmler C, Siejak F, Rudel T . Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J Biol Chem 2001; 276: 26044–26050.

    CAS  Google Scholar 

  67. Milosevic J, Bulau P, Mortz E, Eickelberg O . Subcellular fractionation of TGF-beta1-stimulated lung epithelial cells: a novel proteomic approach for identifying signaling intermediates. Proteomics 2009; 9: 1230–1240.

    CAS  Google Scholar 

  68. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N . Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996; 15: 658–664.

    CAS  Google Scholar 

  69. Lasserre JP, Fack F, Revets D, Planchon S, Renaut J, Hoffmann L et al. Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. J Proteome Res 2009; 8: 5485–5496.

    CAS  Google Scholar 

  70. Felty Q . Proteomic 2D DIGE profiling of human vascular endothelial cells exposed to environmentally relevant concentration of endocrine disruptor PCB153 and physiological concentration of 17beta-estradiol. Cell Biol Toxicol 2011; 27: 49–68.

    CAS  Google Scholar 

  71. Nicolaides NC, Kinzler KW, Vogelstein B . Analysis of the 5' region of PMS2 reveals heterogeneous transcripts and a novel overlapping gene. Genomics 1995; 29: 329–334.

    CAS  Google Scholar 

  72. Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M . Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J Mol Biol 1999; 285: 183–195.

    CAS  Google Scholar 

  73. Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 2000; 60: 5922–5928.

    CAS  Google Scholar 

  74. Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM . Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem 2006; 281: 16193–16196.

    CAS  Google Scholar 

  75. Atanassov BS, Dent SY . USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 2011; 12: 924–930.

    CAS  Google Scholar 

  76. Weber A, Kristiansen I, Johannsen M, Oelrich B, Scholmann K, Gunia S et al. The FUSE binding proteins FBP1 and FBP3 are potential c-myc regulators in renal, but not in prostate and bladder cancer. BMC Cancer 2008; 8: 369.

    Google Scholar 

  77. Singer S, Malz M, Herpel E, Warth A, Bissinger M, Keith M et al. Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer. Cancer Res 2009; 69: 2234–2243.

    CAS  Google Scholar 

  78. Cleaver JE . Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 2005; 5: 564–573.

    CAS  Google Scholar 

  79. Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S et al. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 2004; 4: 45.

    Google Scholar 

  80. Engidawork E, Afjehi-Sadat L, Yang JW, Slavc I, Lubec G . Protein chemical identification and characterization of the human variants of far upstream element binding protein in medulloblastoma DAOY cell line. Int J Oncol 2006; 29: 721–736.

    CAS  Google Scholar 

  81. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  Google Scholar 

  82. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM . c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 2009; 28: 2485–2491.

    CAS  Google Scholar 

  83. Mateyak MK, Obaya AJ, Sedivy JM . c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 1999; 19: 4672–4683.

    CAS  Google Scholar 

  84. Dang CV, O′Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F . The c-Myc target gene network. Semin Cancer Biol 2006; 16: 253–264.

    CAS  Google Scholar 

  85. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    CAS  Google Scholar 

  86. Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J et al. Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 2009; 8: 889–895.

    CAS  Google Scholar 

  87. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 8874–8886.

    CAS  Google Scholar 

  88. Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ . N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 2004; 18: 1862–1874.

    CAS  Google Scholar 

  89. Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A . Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 1997; 272: 7093–7098.

    CAS  Google Scholar 

  90. Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN et al. MYC regulation of a ‘poor-prognosis’ metastatic cancer cell state. Proc Natl Acad Sci USA 2010; 107: 3698–3703.

    CAS  Google Scholar 

  91. Wolfer A, Ramaswamy S . MYC and metastasis. Cancer Res 2011; 71: 2034–2037.

    CAS  Google Scholar 

  92. Yan S, Zhou C, Lou X, Xiao Z, Zhu H, Wang Q et al. PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma. Cancer Res 2009; 69: 3283–3290.

    CAS  Google Scholar 

  93. Smith AP, Verrecchia A, Faga G, Doni M, Perna D, Martinato F et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 2009; 28: 422–430.

    CAS  Google Scholar 

  94. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    CAS  Google Scholar 

  95. Karst AM, Levanon K, Duraisamy S, Liu JF, Hirsch MS, Hecht JL et al. Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol Oncol 2011; 123: 8.

    Google Scholar 

  96. Rana S, Maples PB, Senzer N, Nemunaitis J . Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 2008; 8: 1461–1470.

    CAS  Google Scholar 

  97. Xu SG, Yan PJ, Shao ZM . Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol 2010; 136: 1545–1556.

    CAS  Google Scholar 

  98. Huth JR, Yu L, Collins I, Mack J, Mendoza R, Isaac B et al. NMR-driven discovery of benzoylanthranilic acid inhibitors of far upstream element binding protein binding to the human oncogene c-myc promoter. J Med Chem 2004; 47: 4851–4857.

    CAS  Google Scholar 

  99. Stoneley M, Willis AE . Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004; 23: 3200–3207.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of NIH R01 HL 076530, R01 HL089958, R21ES017473, T32 ES007091 and Arizona Biomedical Research Commission (QMC). We thank Dr Joseph Alpert and Joshua Strom for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q M Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, Q. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 32, 2907–2916 (2013). https://doi.org/10.1038/onc.2012.350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.350

Keywords

This article is cited by

Search

Quick links