Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development

Abstract

Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein—this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    Article  CAS  Google Scholar 

  2. Moenner M, Pluquet O, Bouchecareilh M, Chevet E . Integrated endoplasmic reticulum stress responses in cancerdisclaimer. Cancer Res 2007; 67: 10631–10634.

    Article  CAS  Google Scholar 

  3. Chevet E, Cameron PH, Pelletier MF, Thomas DY, Bergeron JJ . The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 2001; 11: 120–124.

    Article  CAS  Google Scholar 

  4. Ni M, Lee AS . ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581: 3641–3651.

    Article  CAS  Google Scholar 

  5. Benham AM . The protein disulfide isomerase family: key players in health and disease. Antioxid Redox Signal 2011; 16: 781–789.

    Article  Google Scholar 

  6. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44: 694–698.

    Article  CAS  Google Scholar 

  7. Kozlov G, Maattanen P, Thomas DY, Gehring K . A structural overview of the PDI family of proteins. FEBS J 2010; 277: 3924–3936.

    Article  CAS  Google Scholar 

  8. Bradley L, Wainstock D, Sive H . Positive and negative signals modulate formation of the Xenopus cement gland. Development 1996; 122: 2739–2750.

    CAS  PubMed  Google Scholar 

  9. Sive H, Bradley L . A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. Dev Dyn 1996; 205: 265–280.

    Article  CAS  Google Scholar 

  10. Aberger F, Weidinger G, Grunz H, Richter K . Anterior specification of embryonic ectoderm: the role of the Xenopus cement gland-specific gene XAG-2. Mech Dev 1998; 72: 115–130.

    Article  CAS  Google Scholar 

  11. Sive HL, Hattori K, Weintraub H . Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 1989; 58: 171–180.

    Article  CAS  Google Scholar 

  12. Komiya T, Tanigawa Y, Hirohashi S . Cloning of the gene gob-4, which is expressed in intestinal goblet cells in mice. Biochim Biophys Acta 1999; 1444: 434–438.

    Article  CAS  Google Scholar 

  13. Adam GC, Sorensen EJ, Cravatt BF . Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes. Mol Cell Proteomics 2002; 1: 828–835.

    Article  CAS  Google Scholar 

  14. Adam GC, Sorensen EJ, Cravatt BF . Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol 2002; 20: 805–809.

    Article  CAS  Google Scholar 

  15. Adam PJ, Boyd R, Tyson KL, Fletcher GC, Stamps A, Hudson L et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem 2003; 278: 6482–6489.

    Article  CAS  Google Scholar 

  16. Gray TA, Maclaine NJ, Michie CO, Bouchalova P, Murray E, Howie J et al. Anterior Gradient-3: a novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models. J Immunol Methods 2012; 378: 20–32.

    Article  CAS  Google Scholar 

  17. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012; 148: 886–895.

    Article  CAS  Google Scholar 

  18. Persson S, Rosenquist M, Knoblach B, Khosravi-Far R, Sommarin M, Michalak M . Diversity of the protein disulfide isomerase family: identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Mol Phylogenet Evol 2005; 36: 734–740.

    Article  CAS  Google Scholar 

  19. Alanen HI, Williamson RA, Howard MJ, Lappi AK, Jantti HP, Rautio SM et al. Functional characterization of ERp18, a new endoplasmic reticulum-located thioredoxin superfamily member. J Biol Chem 2003; 278: 28912–28920.

    Article  CAS  Google Scholar 

  20. Knoblach B, Keller BO, Groenendyk J, Aldred S, Zheng J, Lemire BD et al. ERp19 and ERp46, new members of the thioredoxin family of endoplasmic reticulum proteins. Mol Cell Proteomics 2003; 2: 1104–1019.

    Article  CAS  Google Scholar 

  21. Jessop CE, Watkins RH, Simmons JJ, Tasab M, Bulleid NJ . Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. J Cell Sci 2009; 122: 4287–4295.

    Article  CAS  Google Scholar 

  22. Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A et al. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 2002; 21: 835–844.

    Article  CAS  Google Scholar 

  23. Bambang IF, Lee YK, Richardson DR, Zhang D . Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal–epithelial transition in breast cancer cells. Oncogene 2013; 32: 1240–1251.

    Article  CAS  Google Scholar 

  24. Zhang JS, Gong A, Cheville JC, Smith DI, Young CY . AGR2an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer 2005; 43: 249–259.

    Article  CAS  Google Scholar 

  25. Zheng W, Rosenstiel P, Huse K, Sina C, Valentonyte R, Mah N et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun 2006; 7: 11–18.

    Article  CAS  Google Scholar 

  26. Petek E, Windpassinger C, Egger H, Kroisel PM, Wagner K . Localization of the human anterior gradient-2 gene (AGR2) to chromosome band 7p21.3 by radiation hybrid mapping and fluorescence in situ hybridisation. Cytogenet Cell Genet 2000; 89: 141–142.

    Article  CAS  Google Scholar 

  27. Krig SR, Jin VX, Bieda MC, O’Geen H, Yaswen P, Green R et al. Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays. J Biol Chem 2007; 282: 9703–9712.

    Article  CAS  Google Scholar 

  28. Thompson DA, McPherson LA, Carmeci C, deConinck EC, Weigel RJ . Identification of two estrogen receptor transcripts with novel 5' exons isolated from a MCF7 cDNA library. J Steroid Biochem Mol Biol 1997; 62: 143–153.

    Article  CAS  Google Scholar 

  29. Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB . Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer 2006; 13: 617–628.

    Article  CAS  Google Scholar 

  30. Zweitzig DR, Smirnov DA, Connelly MC, Terstappen LW, O'Hara SM, Moran E . Physiological stress induces the metastasis marker AGR2 in breast cancer cells. Mol Cell Biochem 2007; 306: 255–260.

    Article  CAS  Google Scholar 

  31. Higa A, Mulot A, Delom F, Bouchecareilh M, Nguyen DT, Boismenu D et al. Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. J Biol Chem 2011; 286: 44855–44868.

    Article  CAS  Google Scholar 

  32. Hrstka R, Nenutil R, Fourtouna A, Maslon MM, Naughton C, Langdon S et al. The pro-metastatic protein anterior gradient-2 predicts poor prognosis in tamoxifen-treated breast cancers. Oncogene 2010; 29: 4838–4847.

    Article  CAS  Google Scholar 

  33. Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci USA 2009; 106: 6950–6955.

    Article  CAS  Google Scholar 

  34. Tachibana C, Stevens TH . The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 1992; 12: 4601–4611.

    Article  CAS  Google Scholar 

  35. Norgaard P, Winther JR . Mutation of yeast Eug1p CXXS active sites to CXXC results in a dramatic increase in protein disulphide isomerase activity. Biochem J 2001; 358: 269–274.

    Article  CAS  Google Scholar 

  36. Wunderlich M, Otto A, Maskos K, Mucke M, Seckler R, Glockshuber R . Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol 1995; 247: 28–33.

    Article  CAS  Google Scholar 

  37. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol 2010; 338: 270–279.

    Article  CAS  Google Scholar 

  38. Schroeder BW, Verhaeghe C, Park SW, Nguyenvu LT, Huang X, Zhen G et al. AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. Am J Respir Cell Mol Biol 2012; 47: 178–185.

    Article  CAS  Google Scholar 

  39. Li S, Wang Y, Zhang Y, Lu MM, Demayo FJ, Dekker JD et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 2012; 139: 2500–2509.

    Article  CAS  Google Scholar 

  40. Gupta A, Dong A, Lowe AW . AGR2 gene function requires a unique endoplasmic reticulum localization motif. J Biol Chem 2012; 287: 4773–4782.

    Article  CAS  Google Scholar 

  41. Dumartin L, Whiteman HJ, Weeks ME, Hariharan D, Dmitrovic B, Iacobuzio-Donahue CA et al. AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer Res 2011; 71: 7091–7102.

    Article  CAS  Google Scholar 

  42. Raykhel I, Alanen H, Salo K, Jurvansuu J, Nguyen VD, Latva-Ranta M et al. A molecular specificity code for the three mammalian KDEL receptors. J Cell Biol 2007; 179: 1193–1204.

    Article  CAS  Google Scholar 

  43. Ramachandran V, Arumugam T, Wang H, Logsdon CD . Anterior gradient 2 is expressed and secreted during the development of pancreatic cancer and promotes cancer cell survival. Cancer Res 2008; 68: 7811–7818.

    Article  CAS  Google Scholar 

  44. Fourtouna A, Murray E, Nicholson J, Maslon M, Pang L, Dryden D et al. The anterior gradient-2 Pathway as a model for developing peptide-aptamer anti-cancer drug leads that stimulate p53 function. Current Chemical Biology 2009; 3: 124–137.

    CAS  Google Scholar 

  45. Pohler E, Craig AL, Cotton J, Lawrie L, Dillon JF, Ross P et al. The Barrett's antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics 2004; 3: 534–547.

    Article  CAS  Google Scholar 

  46. Dong A, Gupta A, Pai RK, Tun M, Lowe AW . The human adenocarcinoma-associated gene, AGR2, induces expression of amphiregulin through Hippo pathway co-activator YAP1 activation. J Biol Chem 2011; 286: 18301–18310.

    Article  CAS  Google Scholar 

  47. Maslon MM, Hrstka R, Vojtesek B, Hupp TR . A divergent substrate-binding loop within the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J Mol Biol 2010; 404: 418–438.

    Article  CAS  Google Scholar 

  48. Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R . Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer Res 2005; 65: 3796–3805.

    Article  CAS  Google Scholar 

  49. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP . Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007; 318: 772–777.

    Article  CAS  Google Scholar 

  50. Fletcher GC, Patel S, Tyson K, Adam PJ, Schenker M, Loader JA et al. hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br J Cancer 2003; 88: 579–85.

    Article  CAS  Google Scholar 

  51. Takenaka IM, Leung SM, McAndrew SJ, Brown JP, Hightower LE . Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J Biol Chem 1995; 270: 19839–19844.

    Article  CAS  Google Scholar 

  52. Clarke DJ, Murray E, Hupp T, Mackay CL, Langridge-Smith PR . Mapping a noncovalent protein–peptide interface by top-down FTICR mass spectrometry using electron capture dissociation. J Am Soc Mass Spectrom 2011; 22: 1432–1440.

    Article  CAS  Google Scholar 

  53. Fraser JA, Vojtesek B, Hupp TR . A novel p53 phosphorylation site within the MDM2 ubiquitination signal: I. phosphorylation at SER269 in vivo is linked to inactivation of p53 function. J Biol Chem 2010; 285: 37762–37672.

    Article  CAS  Google Scholar 

  54. Worrall EG, Worrall L, Blackburn E, Walkinshaw M, Hupp TR . The effects of phosphomimetic lid mutation on the thermostability of the N-terminal domain of MDM2. J Mol Biol 2010; 398: 414–428.

    Article  CAS  Google Scholar 

  55. Worrall EG, Wawrzynow B, Worrall L, Walkinshaw M, Ball KL, Hupp TR . Regulation of the E3 ubiquitin ligase activity of MDM2 by an N-terminal pseudo-substrate motif. J Chem Biol 2009; 2: 113–129.

    Article  Google Scholar 

  56. Fischer PM, Zhelev NZ, Wang S, Melville JE, Fahraeus R, Lane DP . Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. J Pept Res 2000; 55: 163–172.

    Article  CAS  Google Scholar 

  57. Tian C, Gao P, Zheng Y, Yue W, Wang X, Jin H et al. Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res 2008; 18: 458–471.

    Article  CAS  Google Scholar 

  58. Vanderlaag KE, Hudak S, Bald L, Fayadat-Dilman L, Sathe M, Grein J et al. Anterior gradient-2 plays a critical role in breast cancer cell growth and survival by modulating cyclin D1, estrogen receptor-alpha and survivin. Breast Cancer Res 2010; 12: R32.

    Article  Google Scholar 

  59. Wang Z, Hao Y, Lowe AW . The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res 2008; 68: 492–497.

    Article  CAS  Google Scholar 

  60. Vendrell JA, Robertson KE, Ravel P, Bray SE, Bajard A, Purdie CA et al. A candidate molecular signature associated with tamoxifen failure in primary breast cancer. Breast Cancer Res 2008; 10: R88.

    Article  Google Scholar 

  61. Hengel SM, Murray E, Langdon S, Hayward L, O’Donoghue J, Panchaud A et al. Data-independent proteomic screen identifies novel tamoxifen agonist that mediates drug resistance. J Proteome Res 2011; 10: 4567–4578.

    Article  CAS  Google Scholar 

  62. Varghese S, Lao-Sirieix P, Fitzgerald RC . Identification and clinical implementation of biomarkers for Barrett’s esophagus. Gastroenterology 2012; 142: 435–441.

    Article  Google Scholar 

  63. Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, Dagher R et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 2011; 145: 1023–1035.

    Article  CAS  Google Scholar 

  64. Thompson DA, Weigel RJ . hAG-2 the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochem Biophys Res Commun 1998; 251: 111–1116.

    Article  CAS  Google Scholar 

  65. Lepreux S, Bioulac-Sage P, Chevet E . Differential expression of the anterior gradient protein-2 is a conserved feature during morphogenesis and carcinogenesis of the biliary tree. Liver Int 2011; 31: 322–328.

    Article  Google Scholar 

  66. Vivekanandan P, Micchelli ST, Torbenson M . Anterior gradient-2 is overexpressed by fibrolamellar carcinomas. Hum Pathol 2009; 40: 293–299.

    Article  CAS  Google Scholar 

  67. Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012; 55: 1876–1888.

    Article  CAS  Google Scholar 

  68. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    Article  CAS  Google Scholar 

  69. Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008; 15: 1499–1509.

    Article  CAS  Google Scholar 

  70. Park K, Chung YJ, So H, Kim K, Park J, Oh M et al. AGR2, a mucinous ovarian cancer marker, promotes cell proliferation and migration. Exp Mol Med 2011; 43: 91–100.

    Article  CAS  Google Scholar 

  71. Sweeny L, Liu Z, Bush BD, Hartman Y, Zhou T, Rosenthal EL . CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma. Exp Cell Res 2012; 318: 1788–1798.

    Article  CAS  Google Scholar 

  72. Zhang Y, Ali TZ, Zhou H, D’Souza DR, Lu Y, Jaffe J et al. ErbB3 binding protein 1 represses metastasis-promoting gene anterior gradient protein 2 in prostate cancer. Cancer Res 2010; 70: 240–248.

    Article  CAS  Google Scholar 

  73. Bu H, Bormann S, Schafer G, Horninger W, Massoner P, Neeb A et al. The anterior gradient 2 (AGR2) gene is overexpressed in prostate cancer and may be useful as a urine sediment marker for prostate cancer detection. Prostate 2011; 71: 575–587.

    Article  CAS  Google Scholar 

  74. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  Google Scholar 

  75. Thiery JP . Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15: 740–746.

    Article  CAS  Google Scholar 

  76. Mejlvang J, Kriajevska M, Vandewalle C, Chernova T, Sayan AE, Berx G et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell 2007; 18: 4615–4624.

    Article  CAS  Google Scholar 

  77. Zeng Q, Hong W . The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 2008; 13: 188–192.

    Article  CAS  Google Scholar 

  78. Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008; 39: 1582–1589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work has not been cited here owing to space limitations. This work was supported by grants from INSERM, INCa, Ligue contre le Cancer, Association pour la Recherche sur le Cancer (EC), Ligue contre le Cancer and a Chaire mixte Inserm—Univ. Bordeaux (FD), GACR number P301/10/1615 (RH), IGA MZ CR number NT/13794-4/2012 (BV) and by the European Regional Development Fund (RECAMO CZ.1.05/2.1.00/03.0101) (BV, RH, EM), and Cancer Research UK, MRC and BBSRC (TH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Chevet, B Vojtesek or T Hupp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevet, E., Fessart, D., Delom, F. et al. Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 32, 2499–2509 (2013). https://doi.org/10.1038/onc.2012.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.346

Keywords

This article is cited by

Search

Quick links