Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM

Abstract

RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a β-propeller architecture with seven blades like a Gβ protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of RACK1 on the eukaryotic ribosome.
Figure 2: Docking of a RACK1 homology model.
Figure 3: Ribosomal binding site for RACK1.
Figure 4: Identification of residues responsible for rRNA binding.
Figure 5: Src interaction site on the ribosome.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. McCahill, A., Warwicker, J., Bolger, G.B., Houslay, M.D. & Yarwood, S.J. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol. Pharmacol. 62, 1261–1273 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ron, D. et al. Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G proteins. Proc. Natl. Acad. Sci. USA 91, 839–843 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodriguez, M.M., Ron, D., Touhara, K., Chen, C.H. & Mochly-Rosen, D. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 38, 13787–13794 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, B.Y., Conroy, K.B., Machleder, E.M. & Cartwright, C.A. RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18, 3245–3256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, B.Y., Harte, R.A. & Cartwright, C.A. RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 21, 7619–7629 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Liliental, J. & Chang, D.D. Rack1, a receptor for activated protein kinase C, interacts with integrin β subunit. J. Biol. Chem. 273, 2379–2383 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Yaka, R. et al. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc. Natl. Acad. Sci. USA 99, 5710–5715 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sondek, J. & Siderovski, D.P. Gγ-like (GGL) domains: new frontiers in G-protein signaling and β-propeller scaffolding. Biochem. Pharmacol. 61, 1329–1337 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Steele, M.R. et al. Identification of a surface on the β-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5. Cell Signal. 13, 507–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ceci, M. et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chantrel, Y., Gaisne, M., Lions, C. & Verdiere, J. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 148, 559–569 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shor, B., Calaycay, J., Rushbrook, J. & McLeod, M. Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. J. Biol. Chem. 278, 49119–49128 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Inada, T. et al. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs. RNA 8, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baum, S., Bittins, M., Frey, S. & Seedorf, M. Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochem. J. 380, 823–830 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Angenstein, F. et al. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J. Neurosci. 22, 8827–8837 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, A.M., Watson, A. & Fridovich-Keil, J.L. Scp160p associates with specific mRNAs in yeast. Nucleic Acids Res. 31, 1830–1837 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Spahn, C.M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Brodersen, D.E., Clemons, W.M. Jr., Carter, A.P., Wimberly, B.T. & Ramakrishnan, V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J. Mol. Biol. 316, 725–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site (IRES) bound to human 40S and 80S ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Morgan, D.G., Menetret, J.F., Neuhof, A., Rapoport, T.A. & Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Dube, P. et al. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 Å resolution. J. Mol. Biol. 279, 403–421 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Bates, P.A., Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5 (suppl.), 39–46 (2001).

    Article  PubMed  Google Scholar 

  29. Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Rath, B.K. et al. Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144, 95–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Bates, P.A. & Sternberg, M.J. Model building by comparison at CASP3: using expert knowledge and computer automation. Proteins 3 (suppl.), 47–54 (1999).

    Article  PubMed  Google Scholar 

  32. Chang, B.Y., Chiang, M. & Cartwright, C.A. The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J. Biol. Chem. 276, 20346–20356 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Chicurel, M.E., Singer, R.H., Meyer, C.J. & Ingber, D.E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Steward, O. & Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Shevchenko, A., Matthias, W., Ole, V. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Keough, T., Lacey, M.P. & Youngquist, R.S. Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2348–2356 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Sottrup-Jensen, L. A low-pH reverse-phase high-performance liquid chromatography system for analysis of the phenylthiohydantoins of S-carboxymethylcysteine and S-carboxyamidomethylcysteine. Anal. Biochem. 225, 187–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Wagenknecht, T., Grassucci, R. & Frank, J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol. 199, 137–147 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Frank, J., Penczek, P., Agrawal, R.K., Grassucci, R. & Heagle, A. Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol. 317, 276–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, J., Penczek, P.A., Schröder, R. & Frank, J. Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol. 118, 197–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Malhotra, A. et al. Escherichia coli 70 S ribosome at 15 Å resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. J. Mol. Biol. 280, 103–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Gabashvili, I. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carson, M. Ribbons 2.0. J. Appl. Crystallog. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Enghild and I. Thøgersen, as well as C. Oxvig and S. Glerup, for mass spectrometry data, T. Heick Jensen for providing the S. cerevisiae RACK1-deleted strain, and B. Jensen for the T. lanuginosus strain. We are grateful to L. Kristensen for help with N-terminal sequencing. We thank M. Watters for preparing the illustrations, W. Li and B. Rath for their advice on the use of the fitting program and D. Lalor for her help with three-dimensional image processing. This work was supported by Howard Hughes Medical Institute and US National Institutes of Health grants R37 GM29169, R01 GM55440, P41 RR01219 and NSF BIR 9219043 (to J.F.), and by an Ole Rømer research grant and the Danish Research Council. the Human Frontier Science Program and the EMBO Young Investigator Program (to P.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poul Nissen or Joachim Frank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purification of T. lanuginosus 80S ribosomes on hydrophobic column. (PDF 118 kb)

Supplementary Fig. 2

Fourier Shell Correlation (FSC) curves for three ribosome samples. (PDF 56 kb)

Supplementary Fig. 3

Sequence alignment for the S. cerevisiae RACK1 protein and G-β protein. (PDF 116 kb)

Supplementary Fig. 4

Stereo view of the homolog model fitted into the cryo-EM density of the S. cerevisiae 11.7 Å 80S map in the 40S subunit head region. (PDF 138 kb)

Supplementary Fig. 5

Interaction of RACK1 with ribosomal components. (PDF 223 kb)

Supplementary Table 1

Mass spectrometry identification of RACK1 in T. lanuginosus 80S ribosome. (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, J., Nilsson, J., Gursky, R. et al. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 11, 957–962 (2004). https://doi.org/10.1038/nsmb822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb822

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing