Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stone formation and management after bariatric surgery

Key Points

  • The propensity for kidney stone formation in patients who have undergone bariatric surgery is well documented and presents a unique treatment challenge

  • The pathogenesis of kidney stones in these patients involves the malabsorption of fat, which leads to unbound oxalate being absorbed in excess in the gut

  • Specific 24 h urine derangements in the bariatric surgery population include hyperoxaluria, hyperuricosuria, low urine volume and hypocitraturia

  • Dietary prevention of stones with a high-fluid diet and limitation of oxalate and sodium is key; calcium supplementation should also be considered

  • Potassium citrate is helpful as an alkalinizing agent and promotes activity of stone inhibitors

  • Pyridoxine and probiotics require further investigation in this setting

Abstract

Obesity is a significant health concern and is associated with an increased risk of nephrolithiasis, particularly in women. The underlying pathophysiology of stone formation in obese patients is thought to be related to insulin resistance, dietary factors, and a lithogenic urinary profile. Uric acid stones and calcium oxalate stones are common in these patients. Use of surgical procedures for obesity (bariatric surgery) has risen over the past two decades. Although such procedures effectively manage obesity-dependent comorbidities, several large, controlled studies have revealed that modern bariatric surgeries increase the risk of nephrolithiasis by approximately twofold. In patients who have undergone bariatric surgery, fat malabsorption leads to hyperabsorption of oxalate, which is exacerbated by an increased permeability of the gut to oxalate. Patients who have undergone bariatric surgery show characteristic 24 h urine parameters including low urine volume, low urinary pH, hypocitraturia, hyperoxaluria and hyperuricosuria. Prevention of stones with dietary limitation of oxalate and sodium and a high intake of fluids is critical, and calcium supplementation with calcium citrate is typically required. Potassium citrate is valuable for treating the common metabolic derangements as it raises urinary pH, enhances the activity of stone inhibitors, reduces the supersaturation of calcium oxalate, and corrects hypokalaemia. Both pyridoxine and probiotics have been shown in small studies to reduce hyperoxaluria, but further study is necessary to clarify their effects on stone morbidity in the bariatric surgery population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roux-en-Y gastric bypass, the most commonly performed bariatric surgery.
Figure 2: Sleeve gastrectomy, the second most commonly performed restrictive bariatric surgery.
Figure 3: Biliopancreatic diversion with duodenal switch, a procedure that is both restrictive and malabsorptive.

Similar content being viewed by others

References

  1. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012 JAMA 311, 806–814 (2014).

    Article  CAS  Google Scholar 

  2. DeMaria, E. J. Bariatric surgery for morbid obesity. N. Engl. J. Med. 356, 2176–2183 (2007).

    Article  CAS  Google Scholar 

  3. Nguyen, N. T. et al. Trends in use of bariatric surgery, 2003−2008. J. Am. Coll. Surg. 213, 261–266 (2011).

    Article  Google Scholar 

  4. Davis, M. M., Slish, K., Chao, C. & Cabana, M. D. National trends in bariatric surgery, 1996–2002 Arch. Surg. 141, 71–74 (2006).

    Article  Google Scholar 

  5. Buchwald, H. & Oien, D. M. Metabolic/bariatric surgery worldwide 2011. Obes. Surg. 23, 427–436 (2013).

    Article  Google Scholar 

  6. Nelson, W. K., Houghton, S. G., Milliner, D. S., Lieske, J. C. & Sarr, M. G. Enteric hyperoxaluria, nephrolithiasis, and oxalate nephropathy: potentially serious and unappreciated complications of Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 1, 481–485 (2005).

    Article  Google Scholar 

  7. Lieske, J. C. et al. Kidney stones are common after bariatric surgery. Kidney Int. http://dx.doi.org/10.1038/ki.2014.352.

  8. Matlaga, B. R. et al. Effect of gastric bypass surgery on kidney stone disease. J. Urol. 181, 2573–2577 (2009).

    Article  Google Scholar 

  9. Gonzalez, R. D. & Canales, B. K. Kidney stone risk following modern bariatric surgery. Curr. Urol. Rep. 15, 401 (2014).

    Article  Google Scholar 

  10. Duffey, B. G. et al. Roux-en-Y gastric bypass is associated with early increased risk factors for development of calcium oxalate nephrolithiasis. J. Am. Coll. Surg. 206, 1145–1153 (2008).

    Article  Google Scholar 

  11. Taylor, E. N., et al. Obesity, weight gain, and the risk of kidney stones. JAMA 293, 455–462 (2005).

    Article  CAS  Google Scholar 

  12. Sakhaee, K., Adams-Huet, B., Moe, O. W. & Pak, C. Y. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 62, 971–979 (2002).

    Article  CAS  Google Scholar 

  13. Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 68, 1230–1235 (2005).

    Article  Google Scholar 

  14. Sakhaee, K. Nephrolithiasis as a systemic disorder. Curr. Opin. Nephrol. Hypertens. 17, 304–309 (2008).

    Article  Google Scholar 

  15. Cameron, M. A., Maalouf, N. M., Adams-Huet, B., Moe, O. W. & Sakhaee, K. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J. Am. Soc. Nephrol. 17, 1422–1428 (2006).

    Article  CAS  Google Scholar 

  16. Maalouf, N. M., Cameron, M. A., Moe, O. W., Adams-Huet, B. & Sakhaee, K. Low urine pH: a novel feature of the metabolic syndrome. Clin. J. Am. Soc. Nephrol. 2, 883–888 (2007).

    Article  CAS  Google Scholar 

  17. Abate, N., Chandalia, M., Cabo-Chan, A. V. Jr, Moe, O. W. & Sakhaee, K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 65, 386–392 (2004).

    Article  CAS  Google Scholar 

  18. Chen, T., Godebu, E., Horgan, S., Mirheydar, H. S. & Sur, R. L. The effect of restrictive bariatric surgery on urolithiasis. J. Endourol. 27, 242–244 (2013).

    Article  Google Scholar 

  19. Penniston, K. L., Kaplon, D. M., Gould, J. C. & Nakada, S. Y. Gastric band placement for obesity is not associated with increased urinary risk of urolithiasis compared to bypass. J. Urol. 182, 2340–2346 (2009).

    Article  CAS  Google Scholar 

  20. Duffey, B. G. et al. Hyperoxaluria is a long-term consequence of Roux-en-Y Gastric bypass: a 2-year prospective longitudinal study. J. Am. Coll. Surg. 211, 8–15 (2010).

    Article  Google Scholar 

  21. Maalouf, N. M., Tondapu, P., Guth, E. S., Livingston, E. H. & Sakhaee, K. Hypocitraturia and hyperoxaluria after Roux-en-Y gastric bypass surgery. J. Urol. 183, 1026–1030 (2010).

    Article  CAS  Google Scholar 

  22. Wein, A. J., Kavoussi, L. R. & Campbell, M. F. in Campbell–Walsh Urology 10th edn (eds Wein, A. J., Kavoussi, L. R., Novick, A. C., Partin, A. W. & Peters, C. A.) 1287–1323 (Saunders, 2012).

    Google Scholar 

  23. Kumar, R. et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery 149, 654–661 (2011).

    Article  Google Scholar 

  24. Streem, S. B. Long-term incidence and risk factors for recurrent stones following percutaneous nephrostolithotomy or percutaneous nephrostolithotomy/extracorporeal shock wave lithotripsy for infection related calculi. J. Urol. 153, 584–587 (1995).

    Article  CAS  Google Scholar 

  25. Teichman, J. M., Long, R. D. & Hulbert, J. C. Long-term renal fate and prognosis after staghorn calculus management. J. Urol. 153, 1403–1407 (1995).

    Article  CAS  Google Scholar 

  26. Vupputuri, S., Soucie, J. M., McClellan, W. & Sandler, D. P. History of kidney stones as a possible risk factor for chronic kidney disease. Ann. Epidemiol. 14, 222–228 (2004).

    Article  Google Scholar 

  27. [No authors listed] Incidence and prevalence of ESRD. United States Renal Data System. Am. J. Kidney Dis. 32 (Suppl. 1), S38–S49 (1998).

  28. Powell, C. R. et al. Impact of body weight on urinary electrolytes in urinary stone formers. Urology 55, 825–830 (2000).

    Article  CAS  Google Scholar 

  29. Negri, A. L. et al. Role of overweight and obesity on the urinary excretion of promoters and inhibitors of stone formation in stone formers. Urol. Res. 36, 303–307 (2008).

    Article  CAS  Google Scholar 

  30. Maalouf, N. M. et al. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 65, 1422–1425 (2004).

    Article  Google Scholar 

  31. Ekeruo, W. O. et al. Metabolic risk factors and the impact of medical therapy on the management of nephrolithiasis in obese patients. J. Urol. 172, 159–163 (2004).

    Article  Google Scholar 

  32. Pigna, F., Sakhaee, K., Adams-Huet, B. & Maalouf, N. M. Body fat content and distribution and urinary risk factors for nephrolithiasis. Clin. J. Am. Soc. Nephrol. 9, 159–165 (2014).

    Article  CAS  Google Scholar 

  33. Del Valle, E. E. et al. Metabolic diagnosis in stone formers in relation to body mass index. Urol. Res. 40, 47–52 (2012).

    Article  Google Scholar 

  34. Asplin, J. R. & Coe, F. L. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J. Urol. 177, 565–569 (2007).

    Article  Google Scholar 

  35. Sinha, M. et al. Hyperoxaluric nephrolithiasis is a complication of Roux-en-Y gastric bypass surgery. Kidney Int. 72, 100–107 (2007).

    Article  CAS  Google Scholar 

  36. Valezi, A. C., Fuganti, P. E., Junior, J. M. & Delfino, V. D. Urinary evaluation after RYGBP: a lithogenic profile with early postoperative increase in the incidence of urolithiasis. Obes. Surg. 23, 1575–1580 (2013).

    Article  Google Scholar 

  37. Semins, M. J. et al. The effect of restrictive bariatric surgery on urinary stone risk factors. Urology 76, 826–829 (2010).

    Article  Google Scholar 

  38. Colquitt, J. L., Pickett, K., Loveman, E. & Frampton, G. K. Surgery for weight loss in adults. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD003641 http://dx.doi.org/10.1002/14651858.CD003641.pub4.

  39. Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).

    Article  CAS  Google Scholar 

  40. Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).

    Article  CAS  Google Scholar 

  41. Sakhaee, K. et al. Limited risk of kidney stone formation during long-term calcium citrate supplementation in nonstone forming subjects. J. Urol. 152, 324–327 (1994).

    Article  CAS  Google Scholar 

  42. Tondapu, P. et al. Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obes. Surg. 19, 1256–1261 (2009).

    Article  CAS  Google Scholar 

  43. Froeder, L., Arasaki, C. H., Malheiros, C. A., Baxmann, A. C. & Heilberg, I. P. Response to dietary oxalate after bariatric surgery. Clin. J. Am. Soc. Nephrol. 7, 2033–2040 (2012).

    Article  CAS  Google Scholar 

  44. Xu, H., Zisman, A. L., Coe, F. L. & Worcester, E. M. Kidney stones: an update on current pharmacological management and future directions. Expert Opin. Pharmacother. 14, 435–447 (2013).

    Article  CAS  Google Scholar 

  45. Sakhaee, K., Harvey, J. A., Padalino, P. K., Whitson, P. & Pak, C. Y. The potential role of salt abuse on the risk for kidney stone formation. J. Urol. 150, 310–312 (1993).

    Article  CAS  Google Scholar 

  46. Burns, J. & Finlayson, B. Strategies for the medical management of patients with urinary stone disease. Monogr. Urol. 2, 106–125 (1981).

    Google Scholar 

  47. Caudarella, R. et al. Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc. 7, 371–379 (1993).

    CAS  PubMed  Google Scholar 

  48. Ettinger, B., Citron, J., Livermore, B. & Dolman, L. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679–684 (1988).

    Article  CAS  Google Scholar 

  49. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    Article  Google Scholar 

  50. Sakhaee, K., Griffith, C. & Pak, C. Y. Biochemical control of bone loss and stone-forming propensity by potassium-calcium citrate after bariatric surgery. Surg. Obes. Relat. Dis. 8, 67–72 (2012).

    Article  Google Scholar 

  51. Jaeger, P., Portmann, L., Jacquet, A. F. & Burckhardt, P. Pyridoxine can normalize oxaluria in idiopathic renal lithiasis [French]. Schweiz Med. Wochenschr. 116, 1783–1786 (1986).

    CAS  PubMed  Google Scholar 

  52. Mitwalli, A., Ayiomamitis, A., Grass, L. & Oreopoulos, D. G. Control of hyperoxaluria with large doses of pyridoxine in patients with kidney stones. Int. Urol. Nephrol. 20, 353–359 (1988).

    Article  CAS  Google Scholar 

  53. Bobrowski, A. E. & Langman, C. B. Hyperoxaluria and systemic oxalosis: current therapy and future directions. Expert Opin. Pharmacother. 7, 1887–1896 (2006).

    Article  CAS  Google Scholar 

  54. Hatch, M. et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 69, 691–698 (2006).

    Article  CAS  Google Scholar 

  55. Sidhu, H., Allison, M. J., Chow, J. M., Clark, A. & Peck, A. B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J. Urol. 166, 1487–1491 (2001).

    Article  CAS  Google Scholar 

  56. Lieske, J. C., Goldfarb, D. S., De Simone, C. & Regnier, C. Use of a probioitic to decrease enteric hyperoxaluria. Kidney Int. 68, 1244–1249 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.T. and V.G. researched data for the article and wrote the article. S.T. and M.M. provided a substantial contribution to the discussion of content for the article and reviewed/edited the article before submission.

Corresponding author

Correspondence to Sarah Tarplin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarplin, S., Ganesan, V. & Monga, M. Stone formation and management after bariatric surgery. Nat Rev Urol 12, 263–270 (2015). https://doi.org/10.1038/nrurol.2015.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing