Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases

Key Points

  • Cerebrospinal fluid (CSF) biomarkers can track relevant pathophysiological changes that occur in the brains of patients with Alzheimer disease (AD)

  • In AD clinical trials, amyloid-β1–42 (Aβ1–42), total tau (t-tau) and phosphorylated tau (p-tau) are used to measure target engagement, for enrichment or stratification of patients at specific disease stages, or as secondary outcome measures

  • In Parkinson disease (PD), α-synuclein, Aβ1–42, t- tau and p-tau are the most investigated CSF biomarkers, but their value for differentiating parkinsonisms or measuring progression requires further investigation

  • Few clinical trials for PD have used CSF analyses as measures of target engagement, but this use is increasing

  • Areas for further development are harmonization and standardization of the sampling, storage and analysis of CSF samples, together with improved quality of biomarker assays, including the development of fully automated tests

  • Currently, there is no evidence to support the use of CSF biomarkers as surrogate markers of treatment efficacy in clinical trials of patients with AD or PD

Abstract

Alzheimer disease (AD) and Parkinson disease (PD) are the most common neurodegenerative disorders. For both diseases, early intervention is thought to be essential to the success of disease-modifying treatments. Cerebrospinal fluid (CSF) can reflect some of the pathophysiological changes that occur in the brain, and the number of CSF biomarkers under investigation in neurodegenerative conditions has grown rapidly in the past 20 years. In AD, CSF biomarkers are increasingly being used in clinical practice, and have been incorporated into the majority of clinical trials to demonstrate target engagement, to enrich or stratify patient groups, and to find evidence of disease modification. In PD, CSF biomarkers have not yet reached the clinic, but are being studied in patients with parkinsonism, and are being used in clinical trials either to monitor progression or to demonstrate target engagement and downstream effects of drugs. CSF biomarkers might also serve as surrogate markers of clinical benefit after a specific therapeutic intervention, although additional data are required. It is anticipated that CSF biomarkers will have an important role in trials aimed at disease modification in the near future. In this Review, we provide an overview of CSF biomarkers in AD and PD, and discuss their role in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main CSF biomarkers used in trials of anti-amyloid drugs in AD.
Figure 2: Monoclonal antibodies that target Aβ pathology.
Figure 3: Position of CSF biomarkers in AD clinical trials.

Similar content being viewed by others

References

  1. Biomarker Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  2. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. De Meyer, G. et al. Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch. Neurol. 67, 949–956 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Engelborghs, S. et al. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol. Aging 29, 1143–1159 (2008).

    Article  PubMed  Google Scholar 

  5. Tapiola, T. et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 66, 382–389 (2009).

    Article  PubMed  Google Scholar 

  6. Lleó, A. & Saura, C. A. γ-secretase substrates and their implications for drug development in Alzheimer's disease. Curr. Top. Med. Chem. 11, 1513–1527 (2011).

    Article  PubMed  Google Scholar 

  7. Motter, R. et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann. Neurol. 38, 643–648 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fagan, A. M. et al. Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol. 64, 343–349 (2007).

    Article  PubMed  Google Scholar 

  10. Roe, C. M. et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology 80, 1784–1791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Portelius, E., Mattsson, N., Andreasson, U., Blennow, K. & Zetterberg, H. Novel Aβ isoforms in Alzheimer's disease—their role in diagnosis and treatment. Curr. Pharm. Des. 17, 2594–2602 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wiltfang, J. et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer's disease and in patients with chronic neuroinflammation. J. Neurochem. 81, 481–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Vanderstichele, H. et al. Amino-truncated β-amyloid42 peptides in cerebrospinal fluid and prediction of progression of mild cognitive impairment. Clin. Chem. 51, 1650–1660 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Ghidoni, R. et al. A window into the heterogeneity of human cerebrospinal fluid Aβ peptides. J. Biomed. Biotechnol. 2011, 697036 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Portelius, E. et al. A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease. Alzheimers Res. Ther. 2, 7 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Georganopoulou, D. G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos, A. N. et al. Detection of amyloid-β oligomers in human cerebrospinal fluid by flow cytometry and fluorescence resonance energy transfer. J. Alzheimers Dis. 11, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ringman, J. M. et al. Conformation-dependent oligomers in cerebrospinal fluid of presymptomatic familial Alzheimer's disease mutation carriers. Dement. Geriatr. Cogn. Dis. Extra 2, 652–657 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang-Dietrich, L. et al. The amyloid-β oligomer count in cerebrospinal fluid is a biomarker for Alzheimer's disease. J. Alzheimers Dis. 34, 985–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Bruggink, K. A. et al. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue. Anal. Biochem. 433, 112–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Sancesario, G. M. et al. The load of amyloid-β oligomers is decreased in the cerebrospinal fluid of Alzheimer's disease patients. J. Alzheimers Dis. 31, 865–878 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, T. et al. New ELISAs with high specificity for soluble oligomers of amyloid β-protein detect natural Aβ oligomers in human brain but not CSF. Alzheimers Dement. 9, 99–112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Holtta, M. et al. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer's disease. PLoS ONE 8, e66381 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gong, C. X., Liu, F., Grundke-Iqbal, I. & Iqbal, K. Post-translational modifications of tau protein in Alzheimer's disease. J. Neural Transm. 112, 813–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Riemenschneider, M. et al. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch. Neurol. 59, 1729–1734 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hansson, O. et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. van Rossum, I. A. et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 79, 1809–1816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vos, S. J. et al. Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology 80, 1124–1132 (2013).

    Article  PubMed  Google Scholar 

  29. Buchhave, P. et al. Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry 69, 98–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ringman, J. M. et al. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71, 85–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Hesse, C. et al. Cerebrospinal fluid markers for Alzheimer's disease evaluated after acute ischemic stroke. J. Alzheimers Dis. 2, 199–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ost, M. et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67, 1600–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Van Gool, S. W. et al. Disease- and treatment-related elevation of the neurodegenerative marker tau in children with hematological malignancies. Leukemia 14, 2076–2084 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wallin, A. K. et al. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology 74, 1531–1537 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Samgard, K. et al. Cerebrospinal fluid total tau as a marker of Alzheimer's disease intensity. Int. J. Geriatr. Psychiatry 25, 403–410 (2010).

    Article  PubMed  Google Scholar 

  36. Mitchell, A. J. CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer's disease: a meta-analysis of 51 studies. J. Neurol. Neurosurg. Psychiatry 80, 966–975 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Johansson, P. et al. Cerebrospinal fluid biomarkers for Alzheimer's disease: diagnostic performance in a homogeneous mono-center population. J. Alzheimers Dis. 24, 537–546 (2011).

    Article  PubMed  Google Scholar 

  38. Andreasen, N. et al. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol. 58, 373–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Landau, S. M. et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75, 230–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, G. et al. CSF tau/Aβ42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 69, 631–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Vos, S. J. et al. Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shoji, M. et al. Combination assay of CSF tau, Aβ 1–40 and Aβ 1–42(43) as a biochemical marker of Alzheimer's disease. J. Neurol. Sci. 158, 134–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Hansson, O. et al. Prediction of Alzheimer's disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 23, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. de Jong, D., Jansen, R. W., Kremer, B. P. & Verbeek, M. M. Cerebrospinal fluid amyloid β42/phosphorylated tau ratio discriminates between Alzheimer's disease and vascular dementia. J. Gerontol. A Biol. Sci. Med. Sci. 61, 755–758 (2006).

    Article  PubMed  Google Scholar 

  45. Maddalena, A. et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide 42. Arch. Neurol. 60, 1202–1206 (2003).

    Article  PubMed  Google Scholar 

  46. Molinuevo, J. L. et al. The AD-CSF-Index discriminates Alzheimer's disease patients from healthy controls: a validation study. J. Alzheimers Dis. 36, 67–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Fagan, A. M. et al. Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol. Med. 1, 371–380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Welge, V. et al. Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer's disease. J. Neural Transm. 116, 203–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Wiltfang, J. et al. Amyloid β peptide ratio 42/40 but not Aβ42 correlates with phospho-tau in patients with low- and high-CSF Aβ40 load. J. Neurochem. 101, 1053–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lewczuk, P., Zimmermann, R., Wiltfang, J. & Kornhuber, J. Neurochemical dementia diagnostics: a simple algorithm for interpretation of the CSF biomarkers. J. Neural Transm. 116, 1163–1167 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Fagan, A. M. et al. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol. 68, 1137–1144 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Duits, F. H. et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement. 10, 713–723.e2 (2014).

    Article  PubMed  Google Scholar 

  53. Fagan, A. M. et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci. Transl. Med. 6, 226ra30 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Toledo, J. B., Xie, S. X., Trojanowski, J. Q. & Shaw, L. M. Longitudinal change in CSF tau and Aβ biomarkers for up to 48 months in ADNI. Acta Neuropathol. 126, 659–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Seppala, T. T. et al. Longitudinal changes of CSF biomarkers in Alzheimer's disease. J. Alzheimers Dis. 25, 583–594 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Fagan, A. M. & Perrin, R. J. Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer's disease. Biomark. Med. 6, 455–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Lewczuk, P. et al. Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer's disease: a multicenter study. Mol. Psychiatry 15, 138–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Alcolea, D. et al. Relationship between β-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease. J. Alzheimers Dis. 42, 157–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Toledo, J. B. et al. CSF Apo-E levels associate with cognitive decline and MRI changes. Acta Neuropathol. 127, 621–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez-Morillo, E. et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer's disease patients and controls. Acta Neuropathol. 127, 633–643 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Steinacker, P. et al. Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci. Lett. 370, 36–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. M. et al. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin. Chem. 54, 1617–1623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mattsson, N. et al. Cerebrospinal fluid microglial markers in Alzheimer's disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med. 13, 151–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Craig-Schapiro, R. et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biol. Psychiatry 68, 903–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davidsson, P., Puchades, M. & Blennow, K. Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis 20, 431–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Thorsell, A. et al. Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 1362, 13–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Toledo, J. B., Korff, A., Shaw, L. M., Trojanowski, J. Q. & Zhang, J. CSF α-synuclein improves diagnostic and prognostic performance of CSF tau and Aβ in Alzheimer's disease. Acta Neuropathol. 126, 683–697 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Geser, F. et al. On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog. Neurobiol. 95, 649–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Strozyk, D., Blennow, K., White, L. R. & Launer, L. J. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60, 652–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Seppala, T. T. et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78, 1568–1575 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Forsberg, A. et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29, 1456–1465 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Tolboom, N. et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J. Nucl. Med. 50, 1464–1470 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Grimmer, T. et al. Beta amyloid in Alzheimer's disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol. Psychiatry 65, 927–934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jagust, W. J. et al. Relationships between biomarkers in aging and dementia. Neurology 73, 1193–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Landau, S. M. et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of beta-amyloid. Ann. Neurol. 74, 826–836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palmqvist, S. et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid Aβ42: a cross-validation study against amyloid PET in non-demented individuals. JAMA Neurol. 71, 1282–1289 (2014).

    Article  PubMed  Google Scholar 

  78. Scholl, M. et al. Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 79, 229–236 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Buerger, K. et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 129, 3035–3041 (2006).

    Article  PubMed  Google Scholar 

  80. Buerger, K. et al. No correlation between CSF tau protein phosphorylated at threonine 181 with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 130, e82 (2007).

    Article  PubMed  Google Scholar 

  81. Braak, H., Zetterberg, H., Del Tredici, K. & Blennow, K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. 126, 631–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Mattsson, N. et al. BACE1 inhibition induces a specific cerebrospinal fluid β-amyloid pattern that identifies drug effects in the central nervous system. PLoS ONE 7, e31084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Forman, M. S. et al. The novel BACE inhibitor MK-8931 dramatically lowers CSF beta-amyloid in patients with mild-to-moderate Alzheimer's disease. Alzheimers Dement. 9 (Suppl. 4), P139 (2013).

    Article  Google Scholar 

  84. May, P. C. et al. Preclinical and phase I clinical characterization of LY2886721, a BACE1 inhibitor in phase II development for Alzheimer's disease [abstract O1-06-03]. Presented at the 11th International Conference on Alzheimer's & Parkinson's Diseases.

  85. Bernier, F. et al. Clinical study of E2609, a novel BACE1 inhibitor, demonstrates target engagement and inhibition of BACE1 activity in CSF. Alzheimers Dement. 9 (Suppl. 4), P886 (2013).

    Article  Google Scholar 

  86. Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid. Redox Signal. 21, 195–201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Portelius, E. et al. The Aβ5–40/Aβ1–34 ratio reflects BACE1 inhibition in human cerebrospinal fluid. Presented at the 11th International Conference on Alzheimer's & Parkinson's Diseases.

  88. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Siemers, E. R. et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66, 602–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Portelius, E. et al. Amyloid-β1–15/16 as a marker for γ-secretase inhibition in Alzheimer's disease. J. Alzheimers Dis. 31, 335–341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bateman, R. J. et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66, 48–54 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tong, G. et al. Effects of single doses of avagacestat (BMS-708163) on cerebrospinal fluid Aβ levels in healthy young men. Clin. Drug Investig. 32, 761–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Coric, V. et al. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012).

    Article  PubMed  Google Scholar 

  95. Coric, V. et al. A phase II study of the gamma-secretase inhibitor avagacestat (BMS-708163) in predementia Alzheimer's disease. Alzheimers Dement. 9 (Suppl. 4), P283 (2013).

    Article  Google Scholar 

  96. Guardia-Laguarta, C., Pera, M. & Lleo, A. γ-Secretase as a therapeutic target in Alzheimer's disease. Curr. Drug Targets 11, 506–517 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Winblad, B. et al. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer's disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 11, 597–604 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Serrano-Pozo, A. et al. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain 133, 1312–1327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Wilcock, D. M. et al. Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer's disease. J. Neurosci. 29, 7957–7965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zago, W. et al. Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J. Neurosci. 32, 2696–2702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Blennow, K. et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch. Neurol. 69, 1002–1010 (2012).

    Article  PubMed  Google Scholar 

  105. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 322–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Farlow, M. et al. Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimers Dement. 8, 261–271 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Siemers, E. R. et al. Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with Alzheimer disease. Clin. Neuropharmacol. 33, 67–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Racke, M. M. et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J. Neurosci. 25, 629–636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamada, K. et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29, 11393–11398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Mollenhauer, B. et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol. 213, 315–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Hong, Z. et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain 133, 713–726 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Borghi, R. et al. Full length α-synuclein is present in cerebrospinal fluid from Parkinson's disease and normal subjects. Neurosci. Lett. 287, 65–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Jakowec, M. W. et al. The native form of α-synuclein is not found in the cerebrospinal fluid of patients with Parkinson's disease or normal controls. Neurosci. Lett. 253, 13–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Ohrfelt, A. et al. Cerebrospinal fluid α-synuclein in neurodegenerative disorders—a marker of synapse loss? Neurosci. Lett. 450, 332–335 (2009).

    Article  PubMed  CAS  Google Scholar 

  117. Tokuda, T. et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem. Biophys. Res. Commun. 349, 162–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Spies, P. E., Melis, R. J., Sjogren, M. J., Rikkert, M. G. & Verbeek, M. M. Cerebrospinal fluid α-synuclein does not discriminate between dementia disorders. J. Alzheimers Dis. 16, 363–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Noguchi-Shinohara, M. et al. CSF α-synuclein levels in dementia with Lewy bodies and Alzheimer's disease. Brain Res. 1251, 1–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Kasuga, K. et al. Differential levels of α-synuclein, β-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 81, 608–610 (2010).

    Article  PubMed  Google Scholar 

  121. Mollenhauer, B. et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10, 230–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Shi, M. et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol. 69, 570–580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aerts, M. B., Esselink, R. A., Abdo, W. F., Bloem, B. R. & Verbeek, M. M. CSF α-synuclein does not differentiate between parkinsonian disorders. Neurobiol. Aging 33, 430.e1–430.e3 (2012).

    Article  CAS  Google Scholar 

  124. Tateno, F., Sakakibara, R., Kawai, T., Kishi, M. & Murano, T. Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson Disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26, 213–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    Article  PubMed  Google Scholar 

  126. Mollenhauer, B. et al. Total CSF α-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci. Lett. 532, 44–48 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Tokuda, T. et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75, 1766–1772 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Parnetti, L. et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson's disease. Mov. Disord. 29, 1019–1027 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, Y. et al. Phosphorylated α-synuclein in Parkinson's disease. Sci. Transl. Med. 4, 121ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121–134 (2004).

    Article  PubMed  Google Scholar 

  132. Mollenhauer, B. et al. α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. J. Neural Transm. 119, 739–746 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Zubenko, G. S. et al. Cerebrospinal fluid levels of angiotensin-converting enzyme, acetylcholinesterase, and dopamine metabolites in dementia associated with Alzheimer's disease and Parkinson's disease: a correlative study. Biol. Psychiatry 21, 1365–1381 (1986).

    Article  CAS  PubMed  Google Scholar 

  134. Goldstein, D. S., Holmes, C. & Sharabi, Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson's disease and other synucleinopathies. Brain 135, 1900–1913 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bonifati, V., Oostra, B. A. & Heutink, P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson's disease. J. Mol. Med. (Berl.) 82, 163–174 (2004).

    Article  CAS  Google Scholar 

  136. Sjogren, M. et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer's disease, reflecting a common pathophysiological process. Dement Geriatr. Cogn. Disord. 12, 257–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Edison, P. et al. Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J. Neurol. Neurosurg. Psychiatry 79, 1331–1338 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. LeWitt, P., Schultz, L., Auinger, P. & Lu, M. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson's disease. Brain Res. 1408, 88–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bjorkhem, I. et al. Oxysterols and Parkinson's disease: evidence that levels of 24S-hydroxycholesterol in cerebrospinal fluid correlates with the duration of the disease. Neurosci. Lett. 555, 102–105 (2013).

    Article  PubMed  CAS  Google Scholar 

  140. Konings, C. H. et al. Normal cerebrospinal fluid glutathione concentrations in Parkinson's disease, Alzheimer's disease and multiple system atrophy. J. Neurol. Sci. 168, 112–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Mollenhauer, B. et al. Total tau protein, phosphorylated tau (181p) protein, β-amyloid1–42, and β-amyloid1–40 in cerebrospinal fluid of patients with dementia with Lewy bodies. Clin. Chem. Lab. Med. 44, 192–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Parnetti, L. et al. Cerebrospinal fluid biomarkers in Parkinson's disease with dementia and dementia with Lewy bodies. Biol. Psychiatry 64, 850–855 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Kang, J. H. et al. Association of cerebrospinal fluid β-amyloid 1–42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 70, 1277–1287 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Montine, T. J. et al. CSF Aβ42 and tau in Parkinson's disease with cognitive impairment. Mov. Disord. 25, 2682–2685 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Siderowf, A. et al. CSF amyloid β 1–42 predicts cognitive decline in Parkinson disease. Neurology 75, 1055–1061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Alves, G. et al. CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson's disease: the Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry 81, 1080–1086 (2010).

    Article  PubMed  Google Scholar 

  147. Parnetti, L. et al. Cerebrospinal fluid tau/α-synuclein ratio in Parkinson's disease and degenerative dementias. Mov. Disord. 26, 1428–1435 (2011).

    Article  PubMed  Google Scholar 

  148. Parkinson Progression Marker Initiative. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011).

  149. Parnetti, L. et al. Cerebrospinal fluid biomarkers in Parkinson disease. Nat. Rev. Neurol. 9, 131–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. [No authors listed] DATATOP: a multicenter controlled clinical trial in early Parkinson's disease. Parkinson Study Group. Arch. Neurol. 46, 1052–1060 (1989).

  151. [No authors listed] Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson's disease. Parkinson Study Group. Arch. Neurol. 52, 237–245 (1995).

  152. Paul-Visse, G. et al. Safety and efficacy of recombinant human platelet derived growth factor BB (rhPDGF-BB) in Parkinson's disease [abstract 487]. Mov. Disord. 28 (Suppl. 1), S173 (2013).

    Google Scholar 

  153. Dubois, B. et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 13, 614–629 (2014).

    Article  PubMed  Google Scholar 

  154. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 263–269 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging–Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 270–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vellas, B., Andrieu, S., Sampaio, C. & Wilcock, G. Disease-modifying trials in Alzheimer's disease: a European task force consensus. Lancet Neurol. 6, 56–62 (2007).

    Article  PubMed  Google Scholar 

  157. Isaac, M. et al. Qualification opinion of novel methodologies in the predementia stage of Alzheimer's disease: cerebro-spinal-fluid related biomarkers for drugs affecting amyloid burden—regulatory considerations by European Medicines Agency focusing in improving benefit/risk in regulatory trials. Eur. Neuropsychopharmacol. 21, 781–788 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. del Campo, M. et al. Recommendations to standardize preanalytical confounding factors in Alzheimer's and Parkinson's disease cerebrospinal fluid biomarkers: an update. Biomark. Med. 6, 419–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Vanderstichele, H. et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement. 8, 65–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Carrillo, M. C. et al. Global standardization measurement of cerebral spinal fluid for Alzheimer's disease: an update from the Alzheimer's Association Global Biomarkers Consortium. Alzheimers Dement. 9, 137–140 (2013).

    Article  PubMed  Google Scholar 

  161. Mattsson, N. et al. CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimers Dement. 9, 251–261 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. van Rossum, I. A., Vos, S., Handels, R. & Visser, P. J. Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. J. Alzheimers Dis. 20, 881–891 (2010).

    Article  PubMed  CAS  Google Scholar 

  163. Kohannim, O. et al. Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol. Aging 31, 1429–1442 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cummings, J. L. Integrating ADNI results into Alzheimer's disease drug development programs. Neurobiol. Aging 31, 1481–1492 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lorenzi, M. et al. Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment. Neurobiol. Aging 31, 1443–1451, 1451.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Schneider, L. S., Kennedy, R. E. & Cutter, G. R. Requiring an amyloid-β1–42 biomarker for prodromal Alzheimer's disease or mild cognitive impairment does not lead to more efficient clinical trials. Alzheimers Dement. 6, 367–377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Toledo, J. B. et al. CSF biomarkers cutoffs: the importance of coincident neuropathological diseases. Acta Neuropathol. 124, 23–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

  170. Jellinger, K. A. The neuropathologic substrate of Parkinson disease dementia. Acta Neuropathol. 119, 151–153 (2010).

    Article  PubMed  Google Scholar 

  171. Schneider, J. A., Arvanitakis, Z., Bang, W. & Bennett, D. A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69, 2197–2204 (2007).

    Article  PubMed  Google Scholar 

  172. Compta, Y. et al. Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important? Brain 134, 1493–1505 (2011).

    Article  PubMed  Google Scholar 

  173. Paternico, D. et al. Cerebrospinal fluid markers for Alzheimer's disease in a cognitively healthy cohort of young and old adults. Alzheimers Dement. 8, 520–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Mattsson, N. et al. Age and diagnostic performance of Alzheimer disease CSF biomarkers. Neurology 78, 468–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Savva, G. M. et al. Age, neuropathology, and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Maccecchini, M. L. et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-β peptide and tau levels: target engagement, tolerability and pharmacokinetics in humans. J. Neurol. Neurosurg. Psychiatry 83, 894–902 (2012).

    Article  PubMed  Google Scholar 

  177. Lai, R. et al. First-in-human study of E2609, a novel BACE1 inhibitor, demonstrates prolonged reductions in plasma beta-amyloid levels after single dosing. Alzheimers Dement. 8 (Suppl. 4), P96 (2012).

    Article  Google Scholar 

  178. Bell, J. et al. A novel BACE inhibitor (PF-05297909): a two-part adaptive design to evaluate safety, pharmacokinetics and pharmacodynamics for modifying beta-amyloid in a first-in-human study. Alzheimers Dement. 9 (Suppl. 4), P287 (2013).

    Article  Google Scholar 

  179. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Hopkins, C. R. ACS chemical neuroscience molecule spotlight on ELND006: another γ-secretase inhibitor fails in the clinic. ACS Chem. Neurosci. 2, 279–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Galasko, D. R. et al. Safety, tolerability, pharmacokinetics, and Aβ levels after short-term administration of R.-flurbiprofen in healthy elderly individuals. Alzheimer Dis. Assoc. Disord. 21, 292–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Imbimbo, B. P. et al. Pharmacokinetics and pharmacodynamics of CHF5074 after short-term administration in healthy subjects. Alzheimer Dis. Assoc. Disord. 27, 278–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Ross, J. et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr. Alzheimer Res. 10, 742–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Aisen, P. S. et al. A phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology 67, 1757–1763 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Regland, B. et al. Treatment of Alzheimer's disease with clioquinol. Dement. Geriatr. Cogn. Disord. 12, 408–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Lannfelt, L. et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Salloway, S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77, 1253–1262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Black, R. et al. Safety, pharmacokinetics and pharmacodynamics of PQ912, the first glutaminyl cyclase (QC) inhibitor to treat Alzheimer's disease, in healthy elderly. Alzheimers Dement. 9 (Suppl. 4), P280 (2013).

    Article  Google Scholar 

  189. Landen, J. W. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of monthly and quarterly doses of ponezumab (PF-04360365) in subjects with mild-to-moderate Alzheimer's disease. Alzheimers Dement 8 (Suppl. 4), P708 (2012).

    Google Scholar 

  190. Landen, J. W. et al. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin. Neuropharmacol. 36, 14–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Dodel, R. C. et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1472–1474 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Relkin, N. Three-year follow-up on the IVIg for Alzheimer's phase II study. Alzheimers Dement. 8 (Suppl. 4), P589 (2012).

    Article  Google Scholar 

  193. Davidsson, P. et al. Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer's disease. Neurosci. Lett. 300, 157–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Amici, S. et al. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmine. Mech. Ageing Dev. 122, 2057–2062 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Parnetti, L. et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol. Sci. 23 (Suppl. 2), S95–S96 (2002).

    Article  PubMed  Google Scholar 

  196. Darreh-Shori, T. et al. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer's disease following chronic donepezil treatment. J. Neural Transm. 113, 1791–1801 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Garcia-Ayllon, M. S. et al. Cerebrospinal fluid acetylcholinesterase changes after treatment with donepezil in patients with Alzheimer's disease. J. Neurochem. 101, 1701–1711 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Nordberg, A. et al. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients. Curr. Alzheimer Res. 6, 4–14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Parnetti, L. et al. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer's disease. Acta Neurol. Scand. 124, 122–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52, 346–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Sjogren, M. et al. Treatment with simvastatin in patients with Alzheimer's disease lowers both α- and β-cleaved amyloid precursor protein. Dement. Geriatr. Cogn. Disord. 16, 25–30 (2003).

    Article  PubMed  CAS  Google Scholar 

  202. Serrano-Pozo, A. et al. Effects of simvastatin on cholesterol metabolism and Alzheimer disease biomarkers. Alzheimer Dis. Assoc. Disord. 24, 220–226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Riekse, R. G. et al. Effect of statins on Alzheimer's disease biomarkers in cerebrospinal fluid. J. Alzheimers Dis. 10, 399–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Hampel, H. et al. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70, 922–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Forlenza, O. V. et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry 198, 351–356 (2011).

    Article  PubMed  Google Scholar 

  206. Galasko, D. R. et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 69, 836–841 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wharton, W. et al. The effects of ramipril in individuals at risk for Alzheimer's disease: results of a pilot clinical trial. J. Alzheimers Dis. 32, 147–156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Craft, S. et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69, 29–38 (2012).

    Article  PubMed  Google Scholar 

  209. Schwarzschild, M. A. et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 71, 141–150 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is based on an EU Joint Programme—Neurodegenerative Disease Research (JPND) project (www.jpnd.eu). The project is supported through the following funding organizations under the aegis of JPND: the Italian Ministry of Health; the Health Research Council of Academy of Finland (decision no. 263193); the Bundesministerium für Bildung und Forschung (BMBF), Germany; the General Secretary of Research and Technology, Ministry of Education, Greece; the Netherlands Organisation for Health Research and Development (ZonMw); the Leading National Research Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; the Instituto de Salud Carlos III, Spain; and the Swedish Research Council. R.G. is supported by the Ricerca Corrente, Italian Ministry of Health. P.L. is supported by the BMBF (grant 01ED1203D). B. Mollenhauer has received funding support from the BMBF, the Michael J. Fox Foundation for Parkinson's Research, the American Parkinson's Disease Association and the Stifterverband für die Deutsche Wissenschaft (Dr. Werner Jackstädt Stipend).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the researching of data for the article, and to the review/editing of the manuscript before submission. A.L., E.C., L.P., I.S., K.B., H.Z. and B. Mollenhauer wrote the article. A.L., H.V., S.K.H., N.A., B.W., K.B., D.A., J.L.M., H.Z. and B. Mollenhauer made substantial contributions to the discussion of content.

Corresponding author

Correspondence to Alberto Lleó.

Ethics declarations

Competing interests

L.P. has served on advisory boards for Innogenetics. H.V. is a co-founder of ADx Neurosciences and a founder of Biomarkable. P.L. is a consultant for IBL and Innogenetics. A.J. is the founder and CSO of Atlantic Biomarkers and an advisor to Quanterix. P.J.V. has served on advisory boards for Bristol–Myers Squibb and Roche. K.B. has served on advisory boards for Eli Lilly, Kyowa Hakko Kirin Pharma, Pfizer and Roche. D.A. has received honoraria and/or research support from AbbVie Denmark, GE Health, GlaxoSmithKline, H. Lundbeck and Novartis. B. Mollenhauer has received honoraria from GlaxoSmithKline and Orion, and holds or has pending patents regarding methods of differential diagnosis of dementias, ELISA-based quantification of α-synuclein proteins in cerebrospinal fluid and peripheral blood products using 384-well plates, and microRNA expression profiling of cerebrospinal fluid. She serves as a consultant for Bayer Schering Pharma, and receives research support from Boehringer Ingelheim, Desitin Pharmaceuticals, GE Healthcare and Teva. The other authors declare no competing interests.

Supplementary information

Supplementary Box 1

Unpublished clinical trials (DOC 33 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lleó, A., Cavedo, E., Parnetti, L. et al. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat Rev Neurol 11, 41–55 (2015). https://doi.org/10.1038/nrneurol.2014.232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing