Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EEG source imaging in epilepsy—practicalities and pitfalls

Abstract

EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the generating source of electrical potentials recorded on the scalp. Recent advances in computer technologies have made the analysis of ESI data less time-consuming, and have rekindled interest in this technique as a clinical diagnostic tool. On the basis of the available body of evidence, ESI seems to be a promising tool for epilepsy evaluation; however, the precise clinical value of ESI in presurgical evaluation of epilepsy and in localization of eloquent cortex remains to be investigated. In this Review, we describe two fundamental issues in ESI; namely, the forward and inverse problems, and their solutions. The clinical application of ESI in surgical planning for patients with medically refractory focal epilepsy, and its use in source reconstruction together with invasive recordings, is also discussed. As ESI can be used to map evoked responses, we discuss the clinical utility of this technique in cortical mapping—an essential process when planning resective surgery for brain regions that are in close proximity to eloquent cortex.

Key Points

  • EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the source of scalp-recorded potentials

  • The choice of forward and inverse solutions can crucially influence the outcome of source localization using ESI

  • A realistic head model using an individual's MRI offers the best forward solution

  • A high total number of electrodes or concentration of electrodes over the region of interest can improve the accuracy of ESI

  • Attention to technical recording details, including co-registration of electrode positions on MRI and modelling of the initial phase of epileptic spikes, is crucial for accurate source localization using ESI

  • On the basis of current evidence, ESI is a promising tool for epilepsy evaluation, but further studies in large epilepsy cohorts are needed to demonstrate its clinical value

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The forward and inverse problems.
Figure 3: Flow diagram of the ESI process.
Figure 4: Source localization of the initial phase of epileptic spikes.
Figure 5: Validation of EEG source imaging with simultaneous scalp and intracranial EEG.

Similar content being viewed by others

References

  1. Berger, H. On the human electroencephalogram [German]. Arch. Psychiat. Nervenkr. 87, 527–570 (1929).

    Article  Google Scholar 

  2. Jayakar, P., Duchowny, M., Resnick, T. J. & Alvarez, L. A. Localization of seizure foci: pitfalls and caveats. J. Clin. Neurophysiol. 8, 414–431 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche [German]. Annalen der Physik und Chemie 165, 211–233 (1853).

    Article  Google Scholar 

  4. Michel, C. M. & Murray, M. M. Towards the utilization of EEG as a brain imaging tool. Neuroimage 61, 371–385 (2012).

    Article  PubMed  Google Scholar 

  5. van Oosterom, A. History and evolution of methods for solving the inverse problem. J. Clin. Neurophysiol. 8, 371–380 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hallez, H. et al. Review on solving the forward problem in EEG source analysis. J. Neuroeng. Rehabil. 4, 46 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grech, R. et al. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5, 25 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pascual-Marqui, R. D., Sekihara, K., Brandeis, D. & Michel, C. M. in Electrical Neuroimaging (eds Michel, C. M. et al.) 49–77 (Cambridge University Press, New York, 2009).

    Book  Google Scholar 

  9. Fuchs, M., Kastner, J., Wagner, M., Hawes, S. & Ebersole, J. S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712 (2002).

    Article  PubMed  Google Scholar 

  10. Whittingstall, K., Stroink, G., Gates, L., Connolly, J. F. & Finley, A. Effects of dipole position, orientation and noise on the accuracy of EEG source localization. Biomed. Eng. Online 2, 14 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Michel, C. M. et al. EEG source imaging. Clin. Neurophysiol. 115, 2195–2222 (2004).

    Article  PubMed  Google Scholar 

  12. Plummer, C., Litewka, L., Farish, S., Harvey, A. S. & Cook, M. J. Clinical utility of current-generation dipole modelling of scalp EEG. Clin. Neurophysiol. 118, 2344–2361 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Barkley, G. L. & Baumgartner, C. MEG and EEG in epilepsy. J. Clin. Neurophysiol. 20, 163–178 (2003).

    Article  PubMed  Google Scholar 

  14. He, B. et al. Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans. Biomed. Eng. 34, 406–414 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Hamalainen, M. S. & Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36, 165–171 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, C. E. & Henriquez, C. S. Finite element analysis of bioelectric phenomena. Crit. Rev. Biomed. Eng. 18, 207–233 (1990).

    CAS  PubMed  Google Scholar 

  17. Lemieux, L., McBride, A. & Hand, J. W. Calculation of electrical potentials on the surface of a realistic head model by finite differences. Phys. Med. Biol. 41, 1079–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, M. X., Mosher, J. C. & Leahy, R. M. A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys. Med. Biol. 44, 423–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Spinelli, L., Andino, S. G., Lantz, G., Seeck, M. & Michel, C. M. Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr. 13, 115–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ermer, J. J., Mosher, J. C., Baillet, S. & Leah, R. M. Rapidly recomputable EEG forward models for realistic head shapes. Phys. Med. Biol. 46, 1265–1281 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yitembe, B., Crevecoeur, G., Van Keer, R. & Dupre, L. Reduced conductivity dependence method for increase of dipole localization accuracy in the EEG inverse problem. IEEE Trans. Biomed. Eng. 58, 1430–1440 (2011).

    Article  PubMed  Google Scholar 

  22. Tuch, D. S., Wedeen, V. J., Dale, A. M., George, J. S. & Belliveau, J. W. Conductivity mapping of biological tissue using diffusion MRI. Ann. NY Acad. Sci. 888, 314–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Jain, H., Isaacson, D., Edic, P. M. & Newell, J. C. Electrical impedance tomography of complex conductivity distributions with noncircular boundary. IEEE Trans. Biomed. Eng. 44, 1051–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Oostendorp, T. F., Delbeke, J. & Stegeman, D. F. The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 47, 1487–1492 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lai, Y. et al. Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin. Neurophysiol. 116, 456–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Haueisen, J. et al. The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 15, 159–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Vatta, F., Meneghini, F., Esposito, F., Mininel, S. & Di Salle, F. Realistic and spherical head modeling for EEG forward problem solution: a comparative cortex-based analysis. Comput. Intell. Neurosci. 972060 (2010).

  28. Ebersole, J. S. & Hawes-Ebersole, S. Clinical application of dipole models in the localization of epileptiform activity. J. Clin. Neurophysiol. 24, 120–129 (2007).

    Article  PubMed  Google Scholar 

  29. Schneider, M. R. A multistage process for computing virtual dipolar sources of EEG discharges from surface information. IEEE Trans. Biomed. Eng. 19, 1–12 (1972).

    Article  CAS  PubMed  Google Scholar 

  30. Darcey, T. M., Ary, J. P. & Fender, D. H. Spatio-temporal visually evoked scalp potentials in response to partial-field patterned stimulation. Electroencephalogr. Clin. Neurophysiol. 50, 348–355 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Rose, S. & Ebersole, J. S. Advances in spike localization with EEG dipole modeling. Clin. EEG Neurosci. 40, 281–287 (2009).

    Article  PubMed  Google Scholar 

  32. Scherg, M. & von Cramon, D. A new interpretation of the generators of BAEP waves I–V: results of a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62, 290–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Achim, A., Richer, F. & Saint-Hilaire, J. M. Methodological considerations for the evaluation of spatio-temporal source models. Electroencephalogr. Clin. Neurophysiol. 79, 227–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Mosher, J. C., Lewis, P. S. & Leahy, R. M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39, 541–557 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Mosher, J. C. & Leahy, R. M. Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 45, 1342–1354 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Koles, Z. J., Lind, J. C. & Soong, A. C. Spatio-temporal decomposition of the EEG: a general approach to the isolation and localization of sources. Electroencephalogr. Clin. Neurophysiol. 95, 219–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi, K., Akiyama, T., Nakahori, T., Yoshinaga, H. & Gotman, J. Systematic source estimation of spikes by a combination of independent component analysis and RAP-MUSIC. I: principles and simulation study. Clin. Neurophysiol. 113, 713–724 (2002).

    Article  PubMed  Google Scholar 

  38. Xu, X. L., Xu, B. & He, B. An alternative subspace approach to EEG dipole source localization. Phys. Med. Biol. 49, 327–343 (2004).

    Article  PubMed  Google Scholar 

  39. Plummer, C., Harvey, A. S. & Cook, M. EEG source localization in focal epilepsy: where are we now? Epilepsia 49, 201–218 (2008).

    Article  PubMed  Google Scholar 

  40. Pascual-Marqui, R. D., Michel, C. M. & Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Ebersole, J. S. EEG source modeling. The first word. J. Clin. Neurophysiol. 16, 201–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Scherg, M., Bast, T. & Berg, P. Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J. Clin. Neurophysiol. 16, 214–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Mosher, J. C., Baillet, S. & Leahy, R. M. EEG source localization and imaging using multiple signal classification approaches. J. Clin. Neurophysiol. 16, 225–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Fuchs, M., Wagner, M., Kohler, T. & Wischmann, H. A. Linear and nonlinear current density reconstructions. J. Clin. Neurophysiol. 16, 267–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Michel, C. M. et al. Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol. 16, 239–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Ebersole, J. S. EEG source modeling. The last word. J. Clin. Neurophysiol. 16, 297–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Plummer, C., Wagner, M., Fuchs, M., Harvey, A. S. & Cook, M. J. Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. J. Clin. Neurophysiol. 27, 141–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Baillet, S., Friston, K. & Oostenveld, R. Academic software applications for electromagnetic brain mapping using MEG and EEG. Comput. Intell. Neurosci. 2011, 972050 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Litvak, V. et al. EEG and MEG data analysis in SPM8. Comput. Intell. Neurosci. 852961 (2011).

  50. Vanrumste, B. et al. Dipole location errors in electroencephalogram source analysis due to volume conductor model errors. Med. Biol. Eng. Comput. 38, 528–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M. & Michel, C. M. Epileptic source localization with high density EEG: how many electrodes are needed? Clin. Neurophysiol. 114, 63–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Spitzer, A. R., Cohen, L. G., Fabrikant, J. & Hallett, M. A method for determining optimal interelectrode spacing for cerebral topographic mapping. Electroencephalogr. Clin. Neurophysiol. 72, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B. & Cadusch, P. J. Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topogr. 8, 355–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Tong, S. & Thakor, N. V. Quantitative EEG Analysis Methods and Clinical Applications (Artech House, Boston, 2009).

    Google Scholar 

  55. Ding, L. et al. EEG source imaging: correlating source locations and extents with electrocorticography and surgical resections in epilepsy patients. J. Clin. Neurophysiol. 24, 130–136 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oliva, M. et al. EEG dipole source localization of interictal spikes in non-lesional TLE with and without hippocampal sclerosis. Epilepsy Res. 92, 183–190 (2010).

    Article  PubMed  Google Scholar 

  57. Brodbeck, V. et al. Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 51, 583–591 (2010).

    Article  PubMed  Google Scholar 

  58. Plummer, C. et al. Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin. Neurophysiol. 121, 1726–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Coutin-Churchman, P. E. et al. Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci. Clin. Neurophysiol. 123, 471–485 (2012).

    Article  PubMed  Google Scholar 

  60. Benar, C. G. & Gotman, J. Non-uniform spatial sampling in EEG source analysis. In Proc. 23rd Annual International Conference of the IEEE 1, 903–905 (2001).

    Google Scholar 

  61. Koessler, L. et al. Spatial localization of EEG electrodes. Neurophysiol. Clin. 37, 97–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Engels, L., De Tiege, X., Op de Beeck, M. & Warzee, N. Factors influencing the spatial precision of electromagnetic tracking systems used for MEG/EEG source imaging. Neurophysiol. Clin. 40, 19–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Gencer, N. G. & Acar, C. E. Sensitivity of EEG and MEG measurements to tissue conductivity. Phys. Med. Biol. 49, 701–717 (2004).

    Article  PubMed  Google Scholar 

  64. van den Broek, S. P., Reinders, F., Donderwinkel, M. & Peters, M. J. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106, 522–534 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Chitoku, S. et al. Characteristics of dipoles in clustered individual spikes and averaged spikes. Brain Dev. 25, 14–21 (2003).

    Article  PubMed  Google Scholar 

  66. Fuchs, M., Wagner, M. & Kastner, J. Confidence limits of dipole source reconstruction results. Clin. Neurophysiol. 115, 1442–1451 (2004).

    Article  PubMed  Google Scholar 

  67. Alarcon, G. et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J. Neurol. Neurosurg. Psychiatry 57, 435–449 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wennberg, R., Valiante, T. & Cheyne, D. EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin. Neurophysiol. 122, 1295–1313 (2011).

    Article  PubMed  Google Scholar 

  69. Rosenow, F. & Lüders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Huppertz, H. J. et al. Cortical current density reconstruction of interictal epileptiform activity in temporal lobe epilepsy. Clin. Neurophysiol. 112, 1761–1772 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Gavaret, M., Badier, J. M., Marquis, P., Bartolomei, F. & Chauvel, P. Electric source imaging in temporal lobe epilepsy. J. Clin. Neurophysiol. 21, 267–282 (2004).

    Article  PubMed  Google Scholar 

  72. Gavaret, M. et al. Electric source imaging in frontal lobe epilepsy. J. Clin. Neurophysiol. 23, 358–370 (2006).

    Article  PubMed  Google Scholar 

  73. Gavaret, M. et al. Source localization of scalp-EEG interictal spikes in posterior cortex epilepsies investigated by HR-EEG and SEEG. Epilepsia 50, 276–289 (2009).

    Article  PubMed  Google Scholar 

  74. Lantz, G. et al. Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J. Clin. Neurophysiol. 20, 311–319 (2003).

    Article  PubMed  Google Scholar 

  75. Michel, C. M. et al. 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J. Clin. Neurophysiol. 21, 71–83 (2004).

    Article  PubMed  Google Scholar 

  76. Sperli, F. et al. EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47, 981–990 (2006).

    Article  PubMed  Google Scholar 

  77. Brodbeck, V. et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134, 2887–2897 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mirkovic, N., Adjouadi, M., Yaylali, I. & Jayakar, P. 3-d source localization of epileptic foci integrating EEG and MRI data. Brain Topogr. 16, 111–119 (2003).

    Article  PubMed  Google Scholar 

  79. Nayak, D. et al. Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clin. Neurophysiol. 115, 1423–1435 (2004).

    Article  PubMed  Google Scholar 

  80. Meckes-Ferber, S., Roten, A., Kilpatrick, C. & O'Brien, T. J. EEG dipole source localisation of interictal spikes acquired during routine clinical video-EEG monitoring. Clin. Neurophysiol. 115, 2738–2743 (2004).

    Article  PubMed  Google Scholar 

  81. Zumsteg, D., Friedman, A., Wennberg, R. A. & Wieser, H. G. Source localization of mesial temporal interictal epileptiform discharges: correlation with intracranial foramen ovale electrode recordings. Clin. Neurophysiol. 116, 2810–2818 (2005).

    Article  PubMed  Google Scholar 

  82. Zumsteg, D., Friedman, A., Wieser, H. G. & Wennberg, R. A. Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin. Neurophysiol. 117, 2615–2626 (2006).

    Article  PubMed  Google Scholar 

  83. Merlet, I. & Gotman, J. Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clin. Neurophysiol. 112, 414–430 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Boon, P. et al. Ictal source localization in presurgical patients with refractory epilepsy. J. Clin. Neurophysiol. 19, 461–468 (2002).

    Article  PubMed  Google Scholar 

  85. Tao, J. X., Baldwin, M., Ray, A., Hawes-Ebersole, S. & Ebersole, J. S. The impact of cerebral source area and synchrony on recording scalp electroencephalography ictal patterns. Epilepsia 48, 2167–2176 (2007).

    Article  PubMed  Google Scholar 

  86. Assaf, B. A. & Ebersole, J. S. Continuous source imaging of scalp ictal rhythms in temporal lobe epilepsy. Epilepsia 38, 1114–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Koessler, L. et al. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage 51, 642–653 (2010).

    Article  PubMed  Google Scholar 

  88. Assaf, B. A. & Ebersole, J. S. Visual and quantitative ictal EEG predictors of outcome after temporal lobectomy. Epilepsia 40, 52–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Beniczky, S. et al. Source analysis of epileptic discharges using multiple signal classification analysis. Neuroreport 17, 1283–1287 (2006).

    Article  PubMed  Google Scholar 

  90. Jung, K. Y. et al. Spatiotemporospectral characteristics of scalp ictal EEG in mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 1287, 206–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Holmes, M. D. et al. Comparing noninvasive dense array and intracranial electroencephalography for localization of seizures. Neurosurgery 66, 354–362 (2010).

    Article  PubMed  Google Scholar 

  92. Lantz, G. et al. Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin. Clin. Neurophysiol. 110, 176–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Worrell, G. A. et al. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr. 12, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Lantz, G. et al. Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clin. Neurophysiol. 112, 688–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, L., Wilke, C., Brinkmann, B., Worrell, G. A. & He, B. Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage 56, 1908–1917 (2011).

    Article  PubMed  Google Scholar 

  96. Lu, Y., Yang, L., Worrell, G. A. & He, B. Seizure source imaging by means of FINE spatio-temporal dipole localization and directed transfer function in partial epilepsy patients. Clin. Neurophysiol. 123, 1275–1283 (2012).

    Article  PubMed  Google Scholar 

  97. Huppertz, H. J. et al. Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. Neuroimage 13, 15–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Vanrumste, B., Jones, R. D., Bones, P. J. & Carroll, G. J. Slow-wave activity arising from the same area as epileptiform activity in the EEG of paediatric patients with focal epilepsy. Clin. Neurophysiol. 116, 9–17 (2005).

    Article  PubMed  Google Scholar 

  99. Alper, K. et al. Localizing epileptogenic regions in partial epilepsy using three-dimensional statistical parametric maps of background EEG source spectra. Neuroimage 39, 1257–1265 (2008).

    Article  PubMed  Google Scholar 

  100. Fuchs, M., Wagner, M. & Kastner, J. Development of volume conductor and source models to localize epileptic foci. J. Clin. Neurophysiol. 24, 101–119 (2007).

    Article  PubMed  Google Scholar 

  101. Zhang, Y., van Drongelen, W., Kohrman, M. & He, B. Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. Neuroimage 42, 683–695 (2008).

    Article  PubMed  Google Scholar 

  102. Dumpelmann, M., Fell, J., Wellmer, J., Urbach, H. & Elger, C. E. 3D source localization derived from subdural strip and grid electrodes: a simulation study. Clin. Neurophysiol. 120, 1061–1069 (2009).

    Article  PubMed  Google Scholar 

  103. Wilke, C., van Drongelen, W., Kohrman, M. & He, B. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clin. Neurophysiol. 120, 1449–1456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim, J. S. et al. Localization and propagation analysis of ictal source rhythm by electrocorticography. Neuroimage 52, 1279–1288 (2010).

    Article  PubMed  Google Scholar 

  105. Wilke, C., van Drongelen, W., Kohrman, M. & He, B. Neocortical seizure foci localization by means of a directed transfer function method. Epilepsia 51, 564–572 (2010).

    Article  PubMed  Google Scholar 

  106. van Mierlo, P. et al. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56, 1122–1133 (2011).

    Article  PubMed  Google Scholar 

  107. Sutherling, W. W. et al. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 38, 1705–1714 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Buchner, H. et al. Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr. 6, 299–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Bast, T. et al. Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin. Neurophysiol. 118, 1721–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Bai, X., Towle, V. L., van Drongelen, W. & He, B. Cortical potential imaging of somatosensory evoked potentials by means of the boundary element method in pediatric epilepsy patients. Brain Topogr. 23, 333–343 (2011).

    Article  PubMed  Google Scholar 

  111. Rampp, S. & Stefan, H. On the opposition of EEG and MEG. Clin. Neurophysiol. 118, 1658–1659 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

K. Kaiboriboon and M. Hamaneh are supported by the Epilepsy Foundation. M. Hamaneh is also supported by the Coulter Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K. Kaiboriboon researched data for the article. K. Kaiboriboon and S. D. Lhatoo provided substantial contributions to discussion of content and wrote the article. K. Kaiboriboon, H. O. Lüders, M. Hamaneh, J. Turnbull and S. D. Lhatoo contributed equally to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Kitti Kaiboriboon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

EEG source imaging software packages (DOC 57 kb)

Supplementary Table 2

Clinical studies of interictal source analysis (DOC 82 kb)

Supplementary Table 3

Clinical studies of ictal source analysis (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiboriboon, K., Lüders, H., Hamaneh, M. et al. EEG source imaging in epilepsy—practicalities and pitfalls. Nat Rev Neurol 8, 498–507 (2012). https://doi.org/10.1038/nrneurol.2012.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing