Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Confronting bacterial resistance in healthcare settings: a crucial role for microbiologists

Abstract

Bacteria that are resistant to antimicrobial agents, which were previously isolated primarily in acute-care hospitals, now cause infection in a wide range of other healthcare settings. Improved detection of new resistant strains — especially by using practical and affordable screening methods and by evaluating mechanisms of resistance — is a priority for tackling this problem effectively. Standardized, effective surveillance systems for evaluating the emergence and prevalence of resistant strains are necessary to assess the success of intervention strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of resistance by organism/drug combination and hospital setting.
Figure 2: Prevalence of methicillin-resistant Staphylococcus aureus by year and hospital area.
Figure 3: Prevalence of ciprofloxacin-resistant Pseudomonas aeruginosa by year and hospital area.
Figure 4: Mechanisms of spread of bacterial resistance.

Similar content being viewed by others

References

  1. Tenover, F. C. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin. Infect. Dis. 33, S108–S115 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wood, M. J. & Moellering, R. C. Jr. Microbial resistance: bacteria and more. Clin. Infect. Dis. 36, S2–S3 (2003).

    Article  PubMed  Google Scholar 

  3. Diekema, D. J. et al. Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clin. Infect. Dis. 38, 78–85 (2004).

    Article  PubMed  Google Scholar 

  4. Mahgoub, S., Ahmed, J. & Glatt, A. E. Completely resistant Acinetobacter baumannii strains. Infect. Control Hosp. Epidemiol. 23, 477–479 (2002).

    Article  PubMed  Google Scholar 

  5. Livermore, D. M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Fridkin, S. K. et al. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: project ICARE phase 2. Clin. Infect. Dis. 29, 245–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Min, S. S. et al. Multidrug-resistant Enterococcus faecium in a patient with burns. Clin. Infect. Dis. 36, 1210–1211 (2003).

    Article  PubMed  Google Scholar 

  8. Pournaras, S. et al. Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-β-lactamase gene variants blaVIM-2 and blaVIM-4. J. Antimicrob. Chemother. 51, 1409–1414 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Saiman, L. et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin. Infect. Dis. 37, 1313–1319 (2003).

    Article  PubMed  Google Scholar 

  10. Howard, D. H., Scott, R. D., Packard, R. & Jones, D. The global impact of drug resistance. Clin. Infect. Dis. 36, S4–S10 (2003).

    Article  PubMed  Google Scholar 

  11. Cosgrove, S. E. & Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis. 36, 1433–1437 (2003).

    Article  PubMed  Google Scholar 

  12. Engemann, J. J. et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis. 36, 592–598 (2003).

    Article  PubMed  Google Scholar 

  13. Cosgrove, S. E., Kaye, K. S., Eliopoulous, G. M. & Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med. 162, 185–190 (2002).

    Article  PubMed  Google Scholar 

  14. Fridkin, S. K. et al. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997–2001. Clin. Infect. Dis. 36, 429–439 (2003).

    Article  PubMed  Google Scholar 

  15. Chang, S. et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348, 1342–1347 (2003).

    Article  PubMed  Google Scholar 

  16. Centers for Disease Control and Prevention. Vancomycin-resistant Staphylococcus aureus — Pennsylvania, 2002. Morb. Mortal. Wkly Rep. 51, 902 (2002).

  17. Raney, P. M., Williams, P. P., McGowan, J. E. & Tenover, F. C. Validation of Vitek version 7. 01 software for testing staphylococci against vancomycin. Diagn. Microbiol. Infect. Dis. 43, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, C. & Chambers, H. F. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob. Agents Chemother. 47, 3040–3045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tenover, F. C. et al. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J. Clin. Microbiol. 36, 1020–1027 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tenover, F. C. et al. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48, 275–280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hirakata, Y. et al. Clinical and bacteriological characteristics of IMP-type metallo-β-lactamase-producing Pseudomonas aeruginosa. Clin. Infect. Dis. 37, 26–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Urban, C., Segal-Maurer, S. & Rahal, J. J. Considerations in control and treatment of nosocomial infections due to multidrug-resistant Acinetobacter baumannii. Clin. Infect. Dis. 36, 1268–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ouderkirk, J. P., Nord, J. A., Turett, G. S. & Kislak, J. W. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant Gram-negative bacteria. Antimicrob. Agents Chemother. 47, 2659–2662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, S. H. et al. Healthcare-associated outbreak due to pan-drug resistant Acinetobacter baumannii in a surgical intensive care unit. J. Hosp. Infect. 53, 97–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Melano, R. et al. Multiple antibiotic-resistance mechanisms including a novel combination of extended-spectrum β-lactamases in a Klebsiella pneumoniae clinical strain isolated in Argentina. J. Antimicrob. Chemother. 52, 36–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Karlowsky, J. A., Jones, M. E., Thornsberry, C., Friedland, I. R. & Sahm, D. F. Trends in antimicrobial susceptibilities among Enterobacteriaceae isolated from hospitalized patients in the United States from 1998 to 2001. Antimicrob. Agents Chemother. 47, 1672–1680 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Canton, R., Coque, T. M. & Baquero, F. Multi-resistant Gram-negative bacilli: from epidemics to endemics. Curr. Opin. Infect. Dis. 16, 315–325 (2003).

    Article  PubMed  Google Scholar 

  28. Tenover, F. C. et al. Evaluation of the NCCLS extended-spectrum β-lactamase confirmation methods for Escherichia coli with isolates collected during Project ICARE. J. Clin. Microbiol. 41, 3142–3146 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samaha-Kfoury, J. N. & Araj, G. F. Recent developments in β-lactamases and extended spectrum β-lactamases. Br. Med. J. 327, 1209–1213 (2003).

    Article  CAS  Google Scholar 

  30. Alvarez, M., Tran, J. H., Chow, N. & Jacoby, G. A. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother. 48, 533–537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Queenan, A. M., Foleno, B., Gownley, C., Wira, E. & Bush, K. Effects of inoculum and β-lactamase activity in AmpC- and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J. Clin. Microbiol. 42, 269–275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hubert, S. K. et al. Glycopeptide-intermediate Staphylococcus aureus: evaluation of a novel screening method and results of a survey of selected US hospitals. J. Clin. Microbiol. 37, 3590–3593 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Neuhauser, M. M. et al. Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. J. Am. Med. Assoc. 289, 885–888 (2003).

    Article  CAS  Google Scholar 

  34. Fridkin, S. K. Vancomycin-intermediate and-resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clin. Infect. Dis. 32, 108–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Garnacho-Montero, J. et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 36, 1111–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Jevitt, L. A. et al. In vitro activities of daptomycin, linezolid, and quinupristin-dalfopristin against a challenge panel of staphylococci and enterococci, including vancomycin-intermediate S. aureus and vancomycin–resistant E. faecium. Microb. Drug Resist. 9, 389–393.

  37. Marshall, S. H., Donskey, C. J., Hutton-Thomas, R., Salata, R. A. & Rice, L. B. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 46, 3334–3336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pillai, S. K. et al. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J. Infect. Dis. 186, 1603–1607 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Cercenado, E., Cercenado, S., Gomez, J. A. & Bouza, E. In vitro activity of tigecycline (GAR-936), a novel glycylcycline, against vancomycin-resistant enterococci and staphylococci with diminished susceptibility to glycopeptides. J. Antimicrob. Chemother. 52, 138–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Centers for Disease Control and Prevention. National nosocomial infections surveillance (NNIS) system report, data summary from January 1990–May 1999, issued June 1999. Am. J. Infect. Control 27, 520–532 (1999).

  41. Fridkin, S. K. et al. Temporal changes in prevalence of antimicrobial resistance in 23 US hospitals. Emerg. Infect. Dis. 8, 697–701 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Centers for Disease Control and Prevention. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992–June 2002, issued August 2002. Am. J. Infect. Control. 30, 458–475 (2002).

  43. McCarthy, M. Resistant bacteria spread through US communities. 70% of isolates are now resistant to all β-lactam antibiotics. Lancet 362, 1554–1555 (2003).

    Article  PubMed  Google Scholar 

  44. Okuma, K. et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40, 4289–4294 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hunter, P. A. & Reeves, D. S. The current status of surveillance of resistance to antimicrobial agents: report on a meeting. J. Antimicrob. Chemother. 49, 17–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Kahlmeter, G. & Brown, D. F. Resistance surveillance studies — comparability of results and quality assurance of methods. J. Antimicrob. Chemother. 50, 775–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Steward, C. D. et al. Antimicrobial susceptibility testing of carbapenems: multicenter validity testing and accuracy levels of five antimicrobial test methods for detecting resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 41, 351–358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tenover, F. C., Mohammed, M. J., Stelling, J., O'Brien, T. & Williams, R. Ability of laboratories to detect emerging antimicrobial resistance: proficiency testing and quality control results from the World Health Organization's external quality assurance system for antimicrobial susceptibility testing. J. Clin. Microbiol. 39, 241–250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaitram, J. M., Jevitt, L. A., Lary, S. & Tenover, F. C. The World Health Organization's external quality assurance system proficiency testing program has improved the accuracy of antimicrobial susceptibility testing and reporting among participating laboratories using NCCLS methods. J. Clin. Microbiol. 41, 2372–2377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skov, R. et al. Evaluation of a cefoxitin 30 μg disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 52, 204–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Felten, A., Grandry, B., Lagrange, P. H. & Casin, I. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test. J. Clin. Microbiol. 40, 2766–2771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gregson, D. B. et al. Evaluation of the IDI-MRSA assay for the rapid detection of methicillin-resistant S. aureus in nasal and rectal swabs (abstract K–1394). Abstracts of the 43rd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago, Illinois, 2003).

  53. Francois, P. et al. Rapid detection of methicillin-resistant Staphylococcus aureus directly from sterile or nonsterile clinical samples by a new molecular assay. J. Clin. Microbiol. 41, 254–260 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swenson, J. M., Williams, P. P., Killgore, G., O'Hara, C. M. & Tenover, F. C. Performance of eight methods, including two new rapid methods, for detection of oxacillin resistance in a challenge set of Staphylococcus aureus organisms. J. Clin. Microbiol. 39, 3785–3788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasheed, J. K. & Tenover, F. C. in Manual of Clinical Microbiology 8th edn (eds Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A. & Yolken, R. H.) 1196–1212 (ASM, Washington DC, 2003).

    Google Scholar 

  56. Kahlmeter, G. et al. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 52, 145–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Cockerill, F. R. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents Chemother. 43, 199–212 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Potera, C. Signature chips could help to identify, classify bacteria. ASM News 69, 485–486 (2003).

    Google Scholar 

  59. Call, D. R., Bakko, M. K., Krug, M. J. & Roberts, M. C. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob. Agents Chemother. 47, 3290–3295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Volokhov, D., Chizhikov, V., Chumakov, K. & Rasooly, A. Microarray analysis of erythromycin resistance determinants. J. Appl. Microbiol. 95, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Holzman, D. Microarray analyses may speed antibiotic resistance testing. ASM News 69, 538–539 (2003).

    Google Scholar 

  62. Swenson, J. M., Hill, B. C. & Thornsberry, C. Problems with the disk diffusion test for detection of vancomycin resistance in enterococci. J. Clin. Microbiol. 27, 2140–2142 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwaber, M. J. et al. Utility of NCCLS guidelines for identifying extended-spectrum β-lactamases in non-Escherichia coli and non-Klebsiella spp. of Enterobacteriaceae. J. Clin. Microbiol. 42, 294–298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stevenson, K. B. et al. Detection of antimicrobial resistance by small rural hospital microbiology laboratories: comparison of survey responses with current NCCLS laboratory standards. Diagn. Microbiol. Infect. Dis. 47, 303–311 (2003).

    Article  PubMed  Google Scholar 

  65. Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M. & Bager, F. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg. Infect. Dis. 5, 329–335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gales, A. C., Reis, A. O. & Jones, R. N. Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J. Clin. Microbiol. 39, 183–190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. European Committee on Antimicrobial Susceptibility Testing. EUCAST Definitive Document E.DEF 3.1, June 2000. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9, 4–15 (2003).

  68. Hallgren, A. et al. Genetic relatedness among Enterococcus faecalis with transposon-mediated high-level gentamicin resistance in Swedish intensive care units. J. Antimicrob. Chemother. 52, 162–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Flannagan, S. E. et al. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47, 3954–3959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McGeer, A. & Low, D. E. Is resistance futile? Nature Med. 9, 390–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Miranda, G. et al. Clonal and horizontal dissemination of Klebsiella pneumoniae expressing SHV-5 extended-spectrum β-lactamase in a Mexican pediatric hospital. J. Clin. Microbiol. 42, 30–35 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tenover, F. C. & Rasheed, J. K. in Manual of Clinical Microbiology (eds Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A. & Yolken, R. H.) (ASM, Washington DC, 2003).

    Google Scholar 

  73. Bruinsma, N. et al. Hospitalization, a risk factor for antibiotic-resistant Escherichia coli in the community? J. Antimicrob. Chemother. 51, 1029–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Warren, D. K., Kollef, M. H., Seiler, S. M., Fridkin, S. K. & Fraser, V. J. The epidemiology of vancomycin-resistant Enterococcus colonization in a medical intensive care unit. Infect. Control Hosp. Epidemiol. 24, 257–263 (2003).

    Article  PubMed  Google Scholar 

  75. Zeana, C. et al. The epidemiology of multidrug-resistant Acinetobacter baumannii: does the community represent a reservoir? Infect. Control Hosp. Epidemiol. 24, 275–279 (2003).

    Article  PubMed  Google Scholar 

  76. McDougal, L. K. et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J. Clin. Microbiol. 41, 5113–5120 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barlow, M. & Hall, B. G. Experimental prediction of the natural evolution of antibiotic resistance. Genetics 163, 1237–1241 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Barlow, M. & Hall, B. G. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob. Agents Chemother. 46, 1190–1198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hall, B. G., Salipante, S. J. & Barlow, M. The metallo-β-lactamases fall into two distinct phylogenetic groups. J. Mol. Evol. 57, 249–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Andreev, D., Kreitman, M., Phillips, T. W., Beeman, R. W. & Ffrench-Constant, R. H. Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae). J. Mol. Evol. 48, 615–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Salipante, S. J., Barlow, M. & Hall, B. G. GeneHunter, a transposon tool for identification and isolation of cryptic antibiotic resistance genes. Antimicrob. Agents Chemother. 47, 3840–3845 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duck, W. M., Steward, C. D., Banerjee, S. N., McGowan, J. E. Jr & Tenover, F. C. Optimization of computer software settings improves accuracy of pulsed-field gel electrophoresis macrorestriction fragment pattern analysis. J. Clin. Microbiol. 41, 3035–3042 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Finch, R. Antibiotic resistance — from pathogen to disease surveillance. Clin. Microbiol. Infect. 8, 317–320 (2002).

    Article  PubMed  Google Scholar 

  85. NCCLS. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline (M39-A) (NCCLS, Pennsylvania, 2002).

  86. Arias, C. A. et al. Multicentre surveillance of antimicrobial resistance in enterococci and staphylococci from Colombian hospitals, 2001–2002. J. Antimicrob. Chemother. 51, 59–68 (2003).

    Article  PubMed  Google Scholar 

  87. Watson, J. et al. Comparative analysis of multidrug-resistant, non-multidrug-resistant, and archaic methicillin-resistant Staphylococcus aureus isolates from Central Sydney, Australia. J. Clin. Microbiol. 41, 867–872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Karlowsky, J. A. et al. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob. Agents Chemother. 47, 1681–1688 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fritsche, T. R., Sader, H. S. & Jones, R. N. Comparative activity and spectrum of broad-spectrum β-lactams (cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam) tested against 12,295 staphylococci and streptococci: report from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 47, 435–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Sader, H. S., Biedenbach, D. J. & Jones, R. N. Global patterns of susceptibility for 21 commonly utilized antimicrobial agents tested against 48,440 Enterobacteriaceae in the SENTRY antimicrobial surveillance program (1997–2001). Diagn. Microbiol. Infect. Dis. 47, 361–364 (2003).

    Article  PubMed  Google Scholar 

  91. Halstead, D. C., Gomez, N. & McCarter, Y. S. Reality of developing a community-wide antibiogram. J. Clin. Microbiol. 42, 1–6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McGowan, J. E. Jr et al. Does antimicrobial resistance cluster in individual hospitals? J. Infect. Dis. 186, 1362–1365 (2002).

    Article  PubMed  Google Scholar 

  93. Hall, R. & Partridge, S. Unambiguous numbering of antibiotic resistance genes. Antimicrob. Agents Chemother. 47, 3998–3999 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Salgado, C. D., Farr, B. M. & Calfee, D. P. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin. Infect. Dis. 36, 131–139 (2003).

    Article  PubMed  Google Scholar 

  95. Monnet, D. L. Toward multinational antimicrobial resistance surveillance systems in Europe. Int. J. Antimicrob. Agents 15, 91–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Bronzwaer, S. L. et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis. 8, 278–282 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  97. College of American Pathologists. Commission on Laboratory Accreditation. Microbiology Checklist — Changes for 2003, Guideline MIC. 21946. Vol. 2003 (College of American Pathologists, USA, 2003).

  98. Jones, R. N. & Masterton, R. Determining the value of antimicrobial surveillance programs. Diagn. Microbiol. Infect. Dis. 41, 171–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Choudhry, N. K., Stelfox, H. T. & Detsky, A. S. Relationships between authors of clinical practice guidelines and the pharmaceutical industry. JAMA 287, 612–617 (2002).

    Article  PubMed  Google Scholar 

  100. DeAngelis, C. D., Fontanarosa, P. B. & Flanagin, A. Reporting financial conflicts of interest and relationships between investigators and research sponsors. JAMA 286, 89–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Ehrle, L. H. Partnerships between universities and industry. JAMA 287, 1398–1399 (2002).

    Article  PubMed  Google Scholar 

  102. Poupard, J., Brown, J., Gagnon, R., Stanhope, M. J. & Stewart, C. Methods for data mining from large multinational surveillance studies. Antimicrob. Agents Chemother. 46, 2409–2419 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Shapiro and M. Barlow for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. McGowan Jr.

Ethics declarations

Competing interests

Research by Project ICARE is funded by Abbott Laboratories; AstraZeneca; Bayer Corporation, Pharmaceuticals Division; Cubist; Elan Pharmaceuticals; Pfizer, Inc.; and Roche Laboratories.

Related links

Related links

DATABASES

Infectious Disease Information

MRSA

pneumonia

VISA

VRE

VRSA

FURTHER INFORMATION

Antimicrobial Resistance Info Bank

European Antimicrobial Resistance Surveillance System

ISO

Project ICARE

The Institute for Genomic Research S. aureus Michigan VRSA genome

Glossary

ANTIBIOGRAM

The results of all susceptibility tests for a given organism considered as an overall group. The term is often used to refer both to such a profile for an individual organism and to cumulative summaries of such profiles for a given period of time.

ANTIBIOTYPE

The subgroup into which a bacterial organism is classified on the basis of a comparison of its antibiogram with those of organisms of the same genus and species. The antibiotype is the result of the application of a typing system on the basis of this phenotypic characterization.

CLONAL DISSEMINATION

The spread of a single strain of a bacterial organism, or of a single resistance determinant, in a given geographical area, or the introduction of such a strain or element from a geographically distant population.

LOCAL SELECTION

The proliferation and spread, usually under the influence of local antimicrobial use, of resistant bacteria that have either accumulated mutations that reduce their susceptibility to antimicrobial agents or have acquired novel resistance genes by direct DNA transfer

PRINCIPAL-COMPONENT ANALYSIS

A means of representing multidimensional data in a reduced-dimension space to obtain an overview of the data.

ZONE DIAMETER

The measurement (in millimetres) of the diameter of the zone of inhibition of organism growth around a disk that contains a standard amount of an antimicrobial agent. Used in one method of standardized susceptibility testing (agar-disk diffusion) to define the activity of the drug against a bacterial organism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGowan, J., Tenover, F. Confronting bacterial resistance in healthcare settings: a crucial role for microbiologists. Nat Rev Microbiol 2, 251–258 (2004). https://doi.org/10.1038/nrmicro845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing