Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB

Abstract

In bacteria, the processing of double-strand DNA breaks is mediated by the RecBCD, AddAB and AdnAB complexes. These multisubunit helicase–nuclease machines resect the DNA ends and load RecA protein to initiate homologous recombination. Recent studies have revealed fascinating insights into the molecular mechanisms of this process and the evolution of these machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processing of DNA ends by RecBCD.
Figure 2: A model for our current understanding of how RecBCD responds to Chi.
Figure 3: Evolution of a DNA break-processing machine.

Similar content being viewed by others

References

  1. Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    Article  CAS  Google Scholar 

  2. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  Google Scholar 

  3. Shuman, S. & Glickman, M. S. Bacterial DNA repair by non-homologous end joining. Nature Rev. Microbiol. 5, 852–861 (2007).

    Article  CAS  Google Scholar 

  4. Chayot, R., Montagne, B., Mazel, D. & Ricchetti, M. An end-joining repair mechanism in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 2141–2146 (2010).

    Article  CAS  Google Scholar 

  5. Ayora, S. et al. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol. Rev. 35, 1055–1081 (2011).

    Article  CAS  Google Scholar 

  6. Singleton, M. R., Dillingham, M. S., Gaudier, M., Kowalczykowski, S. C. & Wigley, D. B. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432, 187–193 (2004).

    Article  CAS  Google Scholar 

  7. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Ann. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  8. Spies, M. & Kowalczykowski, S. C. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21, 573–580 (2006).

    Article  CAS  Google Scholar 

  9. Taylor, A. F. & Smith, G. R. RecBC enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423, 869–893 (2003).

    Article  Google Scholar 

  10. Dillingham, M. S., Spies, M. & Kowalczykowski, S. C. RecBCD enzyme is a bipolar DNA helicase. Nature 423, 893–897 (2003).

    Article  CAS  Google Scholar 

  11. Dixon, D. A. & Kowalczykowski, S. C. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96 (1993).

    Article  CAS  Google Scholar 

  12. Bianco, P. R. & Kowalczykowski, S. C. The recombination hot spot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5′-GCTGGTGG-3′. Proc. Natl Acad. Sci. USA 94, 6706–6711 (1997).

    Article  CAS  Google Scholar 

  13. Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell 90, 77–86 (1997).

    Article  CAS  Google Scholar 

  14. Saikrishnan, K., Griffiths, S. P., Cook, N., Court, R. & Wigley, D. B. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. EMBO J. 27, 2222–2229 (2008).

    Article  CAS  Google Scholar 

  15. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  16. Saikrishnan, K., Powell, B., Cook, N. J., Webb, M. R. & Wigley, D. B. Mechanistic basis of 5′–3′ translocation in SF1B helicases. Cell 137, 849–859 (2009).

    Article  CAS  Google Scholar 

  17. Smith, G. R. How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view. Microbiol. Mol. Biol. Rev. 76, 217–228 (2012).

    Article  CAS  Google Scholar 

  18. Farah, J. A. & Smith, G. R. The RecBCD enzyme initiation complex for DNA unwinding: enzyme positioning and DNA opening. J. Mol. Biol. 272, 699–715 (1997).

    Article  CAS  Google Scholar 

  19. Wu, C. G., Bradford, C. & Lohman, T. M. Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor. Nature Struct. Mol. Biol. 17, 1210–1217 (2010).

    Article  CAS  Google Scholar 

  20. Wu, C. G., Xie, F. & Lohman, T. M. The primary and secondary translocase activities within E. coli RecBC helicase are tightly coupled to ATP hydrolysis by the RecB motor. J. Mol. Biol. 423, 303–314 (2012).

    Article  CAS  Google Scholar 

  21. Spies, M. et al. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114, 647–654 (2003).

    Article  CAS  Google Scholar 

  22. Spies, M., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. RecBCD enzyme switches lead motor subunits in response to χ recognition. Cell 131, 694–705 (2007).

    Article  CAS  Google Scholar 

  23. Handa, N., Bianco, P. R., Baskin, R. J. & Kowalczykowski, S. C. Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol. Cell 17, 745–750 (2005).

    Article  CAS  Google Scholar 

  24. Handa, N. et al. Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme. Proc. Natl Acad. Sci. USA 109, 8901–8906 (2012).

    Article  CAS  Google Scholar 

  25. Yang, L. et al. Alteration of χ recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control. Proc. Natl Acad. Sci. USA 109, 8907–8912 (2012).

    Article  CAS  Google Scholar 

  26. Chédin, F., Noirot, P., Biaudet, V. & Ehrlich, S. D. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol. Microbiol. 29, 1369–1377 (1998).

    Article  Google Scholar 

  27. Chédin, F., Handa, N., Dillingham, M. S. & Kowalczykowski, S. C. The AddAB helicase/nuclease forms a stable complex with its cognate χ sequence during translocation. J. Biol. Chem. 281, 18610–18617 (2006).

    Article  Google Scholar 

  28. Saikrishnan, K. et al. Insights into Chi recognition from the structure of an AddAB-type helicase–nuclease complex. EMBO J. 31, 1568–1578 (2012).

    Article  CAS  Google Scholar 

  29. Yeeles, J. T., Gwynn, E. J., Webb, M. R. & Dillingham, M. S. The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain. Nucleic Acids Res. 39, 2271–2285 (2011).

    Article  CAS  Google Scholar 

  30. Yeeles, J. T. & Dillingham, M. S. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. J. Mol. Biol. 371, 66–78 (2007).

    Article  CAS  Google Scholar 

  31. Yeeles, J. T., van Aelst, K., Dillingham, M. S. & Moreno-Herrero, F. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol. Cell 42, 806–816 (2011).

    Article  CAS  Google Scholar 

  32. Sinha, K. M., Unciuleac, M. C., Glickman, M. S. & Shuman, S. AdnAB: a new DSB-resecting motor–nuclease from mycobacteria. Genes Dev. 23, 1423–1437 (2009).

    Article  CAS  Google Scholar 

  33. Unciuleac, M. C. & Shuman, S. Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines. J. Biol. Chem. 285, 2632–2641 (2010).

    Article  CAS  Google Scholar 

  34. Unciuleac, M. C. & Shuman, S. Double strand break unwinding and resection by the mycobacterial helicase-nuclease AdnAB in the presence of single strand DNA-binding protein (SSB). J. Biol. Chem. 285, 34319–34329 (2010).

    Article  CAS  Google Scholar 

  35. Lam, S. T., Stahl, M. M., McMilin, K. D. & Stahl, F. W. Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics 77, 425–433 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Halpern, D. et al. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling. PLoS Genet. 3, 1614–1621 (2007).

    Article  CAS  Google Scholar 

  37. Dixon, D. A., Churchill, J. J. & Kowalczykowski, S. C. Reversible inactivation of the Escherichia coli RecBCD enzyme by the recombination hotspot χ in vitro: evidence for functional inactivation or loss of the RecD subunit. Proc. Natl Acad. Sci. USA 91, 2980–2984 (1994).

    Article  CAS  Google Scholar 

  38. Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.B.W. is funded by Cancer Research UK and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Dale B. Wigley's homepage

Creation Safaris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigley, D. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11, 9–13 (2013). https://doi.org/10.1038/nrmicro2917

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2917

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology