Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Recombineering mycobacteria and their phages

Abstract

Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mycobacteriophage-encoded recombination proteins.
Figure 2: Strategies for mycobacterial recombineering.
Figure 3: Mutagenesis of mycobacterial genomes.
Figure 4: Mycobacteriophage recombineering.

Similar content being viewed by others

References

  1. Aldovini, A., Husson, R. N. & Young, R. A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalpana, G. V., Bloom, B. R. & Jacobs, W. R. Jr. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl Acad. Sci. USA 88, 5433–5437 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hatfull, G. F. in Tuberculosis (eds Eisenach, K., Cole, S. T., Jacobs, W. R. Jr & McMurray, D.) 203–218 (ASM Press, Washington DC, 2004).

    Google Scholar 

  4. Balasubramanian, V. et al. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J. Bacteriol. 178, 273–279 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azad, A. K., Sirakova, T. D., Fernandes, N. D. & Kolattukudy, P. E. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272, 16741–16745 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Hinds, J. et al. Enhanced gene replacement in mycobacteria. Microbiology 145, 519–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Parish, T. & Stoker, N. G. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146, 1969–1975 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pashley, C. A., Parish, T., McAdam, R. A., Duncan, K. & Stoker, N. G. Gene replacement in mycobacteria by using incompatible plasmids. Appl. Environ. Microbiol. 69, 517–523 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pelicic, V., Reyrat, J. M. & Gicquel, B. Positive selection of allelic exchange mutants in Mycobacterium bovis BCG. FEMS Microbiol. Lett. 144, 161–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sander, P., Meier, A. & Bottger, E. C. rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16, 991–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Vilcheze, C. et al. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature Med. 12, 1027–1029 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ranallo, R. T., Barnoy, S., Thakkar, S., Urick, T. & Venkatesan, M. M. Developing live Shigella vaccines using λ Red recombineering. FEMS Immunol. Med. Microbiol. 47, 462–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gottesman, M. M., Gottesman, M. E., Gottesman, S. & Gellert, M. Characterization of bacteriophage λ reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J. Mol. Biol. 88, 471–487 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Little, J. W. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242, 679–686 (1967).

    CAS  PubMed  Google Scholar 

  23. Joseph, J. W. & Kolodner, R. Exonuclease VIII of Escherichia coli. I. Purification and physical properties. J. Biol. Chem. 258, 10411–10417 (1983).

    CAS  PubMed  Google Scholar 

  24. Hall, S. D., Kane, M. F. & Kolodner, R. D. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol. 175, 277–287 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kmiec, E. & Holloman, W. K. β protein of bacteriophage λ promotes renaturation of DNA. J. Biol. Chem. 256, 12636–12639 (1981).

    CAS  PubMed  Google Scholar 

  26. Li, Z., Karakousis, G., Chiu, S. K., Reddy, G. & Radding, C. M. The beta protein of phage λ promotes strand exchange. J. Mol. Biol. 276, 733–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Noirot, P. & Kolodner, R. D. DNA strand invasion promoted by Escherichia coli RecT protein. J. Biol. Chem. 273, 12274–12280 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hall, S. D. & Kolodner, R. D. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc. Natl Acad. Sci. USA 91, 3205–3209 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rybalchenko, N., Golub, E. I., Bi, B. & Radding, C. M. Strand invasion promoted by recombination protein β of coliphage λ. Proc. Natl Acad. Sci. USA 101, 17056–17060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iyer, L. M., Koonin, E. V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genomics 3, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y., Muyrers, J. P., Rientjes, J. & Stewart, A. F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol. 4, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muyrers, J. P., Zhang, Y., Buchholz, F. & Stewart, A. F. RecE/RecT and Redα/Redβ initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Costantino, N. & Court, D. L. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl Acad. Sci. USA 100, 15748–15753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murphy, K. C. The λ Gam protein inhibits RecBCD binding to dsDNA ends. J. Mol. Biol. 371, 19–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Marsic, N., Roje, S., Stojiljkovic, I., Salaj-Smic, E. & Trgovcevic, Z. In vivo studies on the interaction of RecBCD enzyme and λ Gam protein. J. Bacteriol. 175, 4738–4743 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy, K. C. Bacteriophage P22 Abc2 protein binds to RecC increases the 5′ strand nicking activity of RecBCD and together with λ bet, promotes Chi-independent recombination. J. Mol. Biol. 296, 385–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Jacobs, W. R. Jr, Tuckman, M. & Bloom, B. R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327, 532–535 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Bardarov, S. et al. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 94, 10961–10966 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banaiee, N. et al. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 52, 557–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Jacobs, W. R. Jr et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260, 819–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, A. I. et al. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol. Microbiol. 50, 463–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, M. H., Pascopella, L., Jacobs, W. R. Jr & Hatfull, G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette–Guerin. Proc. Natl Acad. Sci. USA 88, 3111–3115 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morris, P., Marinelli, L. J., Jacobs-Sera, D., Hendrix, R. W. & Hatfull, G. F. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J. Bacteriol. 190, 2172–2182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pham, T. T., Jacobs-Sera, D., Pedulla, M. L., Hendrix, R. W. & Hatfull, G. F. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153, 2711–2723 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hatfull, G. F. et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet. 2, e92 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nature Methods 4, 147–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. van Kessel, J. C. & Hatfull, G. F. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol. Microbiol. 67, 1094–1107 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Morris, P., Marinelli, L. J., Jacobs-Sera, D., Hendrix, R. W. & Hatfull, G. F. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J. Bacteriol. 190, 2172–2182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ford, M. E., Stenstrom, C., Hendrix, R. W. & Hatfull, G. F. Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79, 63–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Chang, H. W. & Julin, D. A. Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J. Biol. Chem. 276, 46004–46010 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Passy, S. I., Yu, X., Li, Z., Radding, C. M. & Egelman, E. H. Rings and filaments of β protein from bacteriophage λ suggest a superfamily of recombination proteins. Proc. Natl Acad. Sci. USA 96, 4279–4284 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thresher, R. J., Makhov, A. M., Hall, S. D., Kolodner, R. & Griffith, J. D. Electron microscopic visualization of RecT protein and its complexes with DNA. J. Mol. Biol. 254, 364–371 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parish, T., Mahenthiralingam, E., Draper, P., Davis, E. O. & Colston, M. J. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. van Kessel, J. C. & Hatfull, G. F. Mycobacterial recombineering. Methods Mol. Biol. 435, 203–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Wards, B. J. & Collins, D. M. Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol. Lett. 145, 101–105 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T. & Jacobs, W. R. Jr. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Bibb, L. A. & Hatfull, G. F. Integration and excision of the Mycobacterium tuberculosis prophage-like element, ϕRv1. Mol. Microbiol. 45, 1515–1526 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Cha, R. S., Zarbl, H., Keohavong, P. & Thilly, W. G. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl. 2, 14–20 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Datta, S., Costantino, N., Zhou, X. & Court, D. L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl Acad. Sci. USA 105, 1626–1631 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jacobs, W. R. Jr et al. Genetic systems for mycobacteria. Meth. Enzymol. 204, 537–555 (1991).

    Article  CAS  Google Scholar 

  64. Piuri, M. & Hatfull, G. F. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol. Microbiol. 62, 1569–1585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sarkis, G. J., Jacobs, W. R. Jr & Hatfull, G. F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15, 1055–1067 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C. & Court, D. L. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology 319, 185–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Ghosh, P., Wasil, L. R. & Hatfull, G. F. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol. 4, e186 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant AI067649. We thank W. Jacobs Jr and D. Court for helpful discussions, and M. Bochman for help with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham F. Hatfull.

Related links

Related links

DATABASES

Entrez Genome

Che9c

Halo

Giles

lambda

P22

TM4

Entrez Genome Project

Escherichia coli

Mycobacterium avium

Mycobacterium bovis BCG

Mycobacterium tuberculosis

Mycobacterium smegmatis

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kessel, J., Marinelli, L. & Hatfull, G. Recombineering mycobacteria and their phages. Nat Rev Microbiol 6, 851–857 (2008). https://doi.org/10.1038/nrmicro2014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing