Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins

An Erratum to this article was published on 01 December 2007

Key Points

  • Although membrane rafts have often been studied using suboptimal or even improper approaches, recent studies have provided evidence in favour of a lipid compartmentalization of the plasma membrane. This was achieved either using novel and/or better-controlled techniques to visualize nanoscale molecular interactions in resting cells, or by analysing the complex membrane rearrangements that occur in an activated lymphocyte.

  • Lymphocyte migration and activation require the compartmentalization of membrane receptors and signalling molecules in specific cell locations, a process termed polarization. Cell polarization is accompanied by rapid cytoskeletal rearrangements and, at the plasma membrane, by the assembly of membrane rafts.

  • Membrane rafts have been implicated in the organization of signalling platforms that are required for the amplification of signal transduction during lymphocyte migration and activation. Interestingly, membrane-raft dynamics are controlled by co-stimulatory molecules in both B and T cells.

  • The actin cytoskeleton controls membrane-raft dynamics. By tethering and trapping membrane microdomains, the actin network influences the stability and the dimensions of membrane rafts and allows their concentration in active sites of the cell.

Abstract

The existence of plasma-membrane-raft microdomains has been widely debated during the past few years. However, it is clear that during lymphocyte stimulation a lipid-based reorganization occurs at the plasma membrane, with markers of the membrane rafts being selectively recruited to key active regions of the cell. Recent reports have demonstrated that membrane-raft dynamics are controlled by proteins that are linked to the actin cytoskeleton and have suggested a new model for the plasma membrane based on protein–lipid interactions. This new and dynamic view of the plasma membrane may improve our understanding of the complex process leading to cell polarization during lymphocyte migration and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The plasma membrane.
Figure 2: Possible roles of membrane rafts in cell migration.
Figure 3: Regulation of membrane-raft dynamics by actin-binding proteins.

Similar content being viewed by others

References

  1. Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  Google Scholar 

  2. Silvius, J. R. Role of cholesterol in lipid rafts formation: lessons from lipid model system. Biochim. Biophys. Acta 1610, 174–183 (2003).

    Article  CAS  Google Scholar 

  3. Rodriguez-Boulan, E. & Nelson, W. J. Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725 (1989).

    Article  CAS  Google Scholar 

  4. Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

    Article  CAS  Google Scholar 

  5. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  Google Scholar 

  6. Cinek, T. & Horejsi, V. The nature of large noncovalent complexes containing glycosyl- phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J. Immunol. 149, 2262–2270 (1992).

    CAS  PubMed  Google Scholar 

  7. Casey, P. J. Protein lipidation in cell signaling. Science 268, 221–225 (1995).

    Article  CAS  Google Scholar 

  8. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  9. Munro, S. Lipid rafrs: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  Google Scholar 

  10. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 1–7 (2002).

    Article  Google Scholar 

  11. Heerklotz, H., Szadkowska, H., Anderson, T. & Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton. J. Mol. Biol. 329, 793–799 (2003).

    Article  CAS  Google Scholar 

  12. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  Google Scholar 

  13. Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32, 3082–3091 (2002).

    Article  CAS  Google Scholar 

  14. Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for endocytosis. EMBO J. 20, 2202–2213 (2001).

    Article  CAS  Google Scholar 

  15. Kwik, S. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA 100, 13964–13969 (2003).

    Article  CAS  Google Scholar 

  16. Jacobson, K., Mouritsen, O. G. & Anderson, R. G. W. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol. 9, 7–14 (2007).

    Article  CAS  Google Scholar 

  17. Subczynski, W. K. & Kusumi, A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243 (2003).

    Article  CAS  Google Scholar 

  18. Liang, Y. et al. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662 (2003).

    Article  CAS  Google Scholar 

  19. Quinn, P., Griffiths, G. & Warren, G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J. Cell Biol. 98, 2142–2147 (1984).

    Article  CAS  Google Scholar 

  20. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  21. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    Article  CAS  Google Scholar 

  22. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  Google Scholar 

  23. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006).

    Article  CAS  Google Scholar 

  24. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004). In this paper, the authors used fluorescence lifetime imaging microscopy to demonstrate the existence of cholesterol-sensitive domains of GPI-anchored proteins in living cells.

    Article  CAS  Google Scholar 

  25. Suzuki, K. G. N. et al. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007).

    Article  CAS  Google Scholar 

  26. Suzuki, K. G., Fujiwara, T. K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007). In this paper, the authors used single-particle tracking to demonstrate that both protein–protein and lipid–lipid (raft) interactions are necessary during signalling through CD59 (a GPI-anchored protein).

    Article  CAS  Google Scholar 

  27. Lauffenburger, D. & Horwitz, A. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  28. Sanchez-Madrid, F. & del Pozo, M. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  Google Scholar 

  29. Millán, J., Montoya, M., Sancho, D., Sánchez-Madrid, F. & Alonso, M. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984 (2002).

    Article  Google Scholar 

  30. Seveau, S., Eddy, R., Maxfield, F. & Pierini, L. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell 12, 3550–3562 (2001).

    Article  CAS  Google Scholar 

  31. Kindzelskii, A., Sitrin, R. & Petty, H. Cutting edge: optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role calcium signaling. J. Immunol. 172, 4681–4685 (2004).

    Article  CAS  Google Scholar 

  32. Gómez-Moutón, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl Acad. Sci. USA 98, 9642–9647 (2001).

    Article  Google Scholar 

  33. Gri, G., Molon, B., Mañes, S., Pozzan, T. & Viola, A. The inner side of T cell lipid rafts. Immunol. Lett. 94, 247–252 (2004).

    Article  CAS  Google Scholar 

  34. Ge, S. & Pachter, J. Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes. J. Biol. Chem. 279, 6688–6695 (2004).

    Article  CAS  Google Scholar 

  35. Jiao, X., Zhang, N., Xu, X., Oppenheim, J. & Jin, T. Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol. Cell. Biol. 25, 5752–5762 (2005).

    Article  CAS  Google Scholar 

  36. Mañes, S., Lacalle, R., Gómez- Moutón, C. & Martínez-A, C. From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol. 24, 320–326 (2003).

    Article  Google Scholar 

  37. Fabbri, M. et al. Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the aL/b2 integrin, LFA-1, during leukocyte chemotaxis. Mol. Biol. Cell 16, 5793–5803 (2005).

    Article  CAS  Google Scholar 

  38. del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842 (2004).

    Article  CAS  Google Scholar 

  39. Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006).

    Article  CAS  Google Scholar 

  40. Moffett, S., Brown, D. & Linder, M. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198 (2000).

    Article  CAS  Google Scholar 

  41. Oh, P. & Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell 12, 685–698 (2001).

    Article  CAS  Google Scholar 

  42. Dykstra, M., Cherukuri, A., Sohn, H. W., Tzeng, S. -J. & Pierce, S. K. Location is everything: Lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  Google Scholar 

  43. Davis, D. M. & Dustin, M. L. What is the importance of the immunological synapse? Trends Immunol. 25, 323–327 (2004).

    Article  CAS  Google Scholar 

  44. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  45. Gupta, N. et al. Quantitative proteomics analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nature Immunol. 7, 625–633 (2006). This paper shows that BCR engagement induces the dissociation of ezrin from rafts, and proposes that, by acting as a linker to the actin cytoskeleton, ezrin regulates raft dynamics in B cells.

    Article  CAS  Google Scholar 

  46. Von Haller, P. D., Donohoe, S., Goodlett, D. R. Aebersold, R. & Watts, J. D. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics 1, 1010–1021 (2001).

    Article  CAS  Google Scholar 

  47. Billadeau, D. D. & Burkhardt, J. K. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the troupe. Traffic 7, 1451–1460 (2006).

    Article  CAS  Google Scholar 

  48. Saint-Ruf, C. et al. Different initiation of pre-TCR and gdTCR signaling. Nature 406, 524–527 (2000).

    Article  CAS  Google Scholar 

  49. Leitenberg, D., Balamuth, F. & Bottomly, K. Changes in the T cell receptor macromolecular signaling complex and membrane microdomains during T cell development and activation. Semin. Immunol. 13, 129–138 (2001).

    Article  CAS  Google Scholar 

  50. Guo, B., Kato, R. M., Garcia-Lloret, M., Wahl, M. I. & Rawlings, D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  51. Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    Article  CAS  Google Scholar 

  52. Chung, J. B., Baumeister, M. A. & Monroe, J. G. Differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J. Immunol. 166, 736–740 (2001).

    Article  CAS  Google Scholar 

  53. Sohn, H. W., Tolar, P., Jin, T. & Pierce, S. K. Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc. Natl Acad. Sci. USA 103, 8143–8148 (2006). In this article, the authors used FRET to provide evidence for a selective and transient association of the BCR with a raft-targeted reporter within seconds of antigen binding.

    Article  CAS  Google Scholar 

  54. Tavano, R. et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nature Cell Biol. 8, 1270–1276 (2006). This paper demonstrates the CD28-mediated selective recruitment of a raft-targeted reporter into the T-cell immunological synapse, and provides a mechanism based on the interaction of CD28 with the actin-binding protein FLNA.

    Article  CAS  Google Scholar 

  55. Cherukuri, A., Cheng, P. C., Sohn, H. W. & Pierce, S. K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 14, 169–179 (2001).

    Article  CAS  Google Scholar 

  56. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  Google Scholar 

  57. Glebov, O. O. & Nichols, B. J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biol. 6, 238–243 (2004).

    Article  CAS  Google Scholar 

  58. Tavano, R. et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol. 173, 5392–5397 (2004).

    Article  CAS  Google Scholar 

  59. Viola, A. Amplification of TCR signaling by membrane dynamic microdomains. Trends Immunol. 22, 322–327 (2001).

    Article  CAS  Google Scholar 

  60. Manes, S. & Viola, A. Lipid rafts in lymphocyte activation and migration. Mol. Membr. Biol. 23, 59–69 (2006).

    Article  CAS  Google Scholar 

  61. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  62. Mossman, K. D., Campi, G., Groves, J. T. & Dustin M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005).

    Article  CAS  Google Scholar 

  63. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  64. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  Google Scholar 

  65. Cullinan, P., Sperling, A. I. & Burkhardt, J. K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev. 189, 111–122 (2002).

    Article  CAS  Google Scholar 

  66. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  Google Scholar 

  67. Flanagan, L. A. et al. Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. J. Cell Biol. 155, 511–517 (2001).

    Article  CAS  Google Scholar 

  68. Hayashi, K. & Altman, A. Filamin A is required for T cell activation mediated by protein kinase C-θ. J. Immunol. 177, 1721–1728 (2006).

    Article  CAS  Google Scholar 

  69. Gupta, N. & DeFranco, A. L. Visualization of lipid raft dynamics and early signaling events during antigen receptor-mediated B cell activation. Mol. Biol. Cell 14, 432–444 (2003).

    Article  CAS  Google Scholar 

  70. Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation. Nature Immunol. 5, 272–279 (2004).

    Article  CAS  Google Scholar 

  71. Hao, S. & August, A. Actin depolymerization transduces the strength of B cell receptor stimulation. Mol. Biol. Cell 16, 2275–2284 (2005).

    Article  CAS  Google Scholar 

  72. Haggie, P. M., Kim, J. K., Lukacs, G. L. & Verkman, A. S. Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol. Biol. Cell 17, 4937–4945 (2006).

    Article  CAS  Google Scholar 

  73. Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103, 11364–11369 (2006).

    Article  CAS  Google Scholar 

  74. Golub, T. & Pico, C. Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp. 72, 119–127 (2005).

    Article  CAS  Google Scholar 

  75. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Necci for assistance with original graphics and our colleagues for discussions. N.G. is the recipient of a K01 mentored research career development award (DK068,292) from NIDDK. A.V. is supported by grants from the Italian Association for Cancer Research (AIRC), MIUR/COFIN, the Cancer Research Institute of New York, the Department of Defense Prostate Cancer Research Program and the EMBO Young Investigator Programme. We apologize to colleagues whose work is cited via review rather than original work owing to space restraints.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Antonella Viola's homepage

Neetu Gupta's homepage

Glossary

Membrane rafts

Small (10–200 nm in diameter), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched membrane domains that can sometimes be stabilized to form larger platforms through protein–protein and protein–lipid interactions. Considering the new definition and the recent literature, the term 'membrane rafts' is preferable to 'lipid rafts'.

Detergent-resistant membranes

(DRMs). The low-density fractions obtained after the sucrose density gradient ultracentrifugation of detergent-lysed cells. In general, a neutral detergent solution at 4°C is used. The term DRM is not synonymous with membrane raft.

Lipid miscibility

The property of different lipids to mix and form homogeneous lipid phases. Sphingolipid–cholesterol rafts are considered to be liquid-ordered-phase domains that are dispersed in a liquid crystalline bilayer.

Membrane potential

The electrical-potential difference (voltage) across a cell's plasma membrane, which arises from the separation of positive and negative charges across the membrane owing to the action of ion transporters that maintain controlled ion concentrations inside the cell.

Fluorescence resonance energy transfer

(FRET). A quantum mechanical process by which excitation energy is transferred, without the emission of a photon, from a donor fluorophore to an acceptor fluorophore that is in close proximity. FRET can be used to analyse molecular interactions (in the range of 10–100 Å).

Immunological synapse

The specialized contact area between a T cell and one or more antigen-presenting cells, which is dynamic, and shows lipid and protein segregation, signalling compartmentalization and bidirectional information exchange through soluble and membrane-bound transmitters.

B-cell receptor capping

The binding of multivalent ligands to B-cell receptors induces redistribution and aggregation of the bound receptors into patches. Capping, which requires metabolic energy and cytoskeleton dynamics, represents the coalescence of patches to form a single aggregate called cap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viola, A., Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 7, 889–896 (2007). https://doi.org/10.1038/nri2193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing