Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral subversion of B cell responses within secondary lymphoid organs

Key Points

  • An efficient antibody response to an infecting virus requires the dynamic localization of B cells in unique niches and interaction with neighbouring cells and the local microenvironment.

  • The long relationship between viruses and hosts has resulted in the evolution of several diverse viral strategies that interfere with B cell responses.

  • Virus-induced type I interferon has emerged as a major player that inhibits antiviral humoral immune responses at multiple levels: first, it induces the lymph node recruitment of inflammatory monocytes that inhibit antiviral B cells; second, it promotes the expansion and differentiation of cytotoxic T lymphocytes that kill antiviral B cells; and third, it indirectly supports the differentiation of antiviral B cells into short-lived plasma cells.

  • Further identification of the cellular and molecular mechanisms used by viruses to evade immune control might lead to new treatments for the termination of chronic viral infections and instruct the design of novel, rational vaccines.

Abstract

Antibodies play a crucial role in virus control. The production of antibodies requires virus-specific B cells to encounter viral antigens in lymph nodes, become activated, interact with different immune cells, proliferate and enter specific differentiation programmes. Each step occurs in distinct lymph node niches, requiring a coordinated migration of B cells between different subcompartments. The development of multiphoton intravital microscopy has enabled researchers to begin to elucidate the precise cellular and molecular events by which lymph nodes coordinate humoral responses. This Review discusses recent studies that clarify how viruses interfere with antibody responses, highlighting how these mechanisms relate to our topological and temporal understanding of B cell activation within secondary lymphoid organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal dynamics of B cell activation.
Figure 2: Viral interference with early B cell activation.
Figure 3: Inflammatory monocytes hinder antiviral B cell responses.
Figure 4: Viral subversion of B cell responses in germinal centres.
Figure 5: Type I interferon-mediated suppression of antibody responses.

Similar content being viewed by others

References

  1. Moseman, E. A. et al. B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 36, 415–426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Burton, D. R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zinkernagel, R. M. Maternal antibodies, childhood infections, and autoimmune diseases. N. Engl. J. Med. 345, 1331–1335 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hangartner, L., Zinkernagel, R. M. & Hengartner, H. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 6, 231–243 (2006). This is an excellent review on the heterogeneity of antiviral antibody responses discussed in the context of co-evolution of the host and viruses.

    Article  CAS  PubMed  Google Scholar 

  6. Zinkernagel, R. M. Immunology taught by viruses. Science 271, 173–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. http://dx.doi.org/10.1038/nri.2017.106 (2017).

  8. Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34, 635–659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Hahn, T. et al. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, M. et al. Limited humoral immunity in hepatitis C virus infection. Gastroenterology 116, 135–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ciurea, A. et al. Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc. Natl Acad. Sci. USA 97, 2749–2754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corti, D. & Lanzavecchia, A. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31, 705–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Escolano, A., Dosenovic, P. & Nussenzweig, M. C. Progress toward active or passive HIV-1 vaccination. J. Exp. Med. 214, 3–16 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Zhong, P., Agosto, L. M., Munro, J. B. & Mothes, W. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3, 44–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Moir, S. & Fauci, A. S. B-Cell exhaustion in HIV infection: the role of immune activation. Curr. Opin. HIV AIDS 9, 472–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Moir, S. & Fauci, A. S. B-Cell responses to HIV infection. Immunol. Rev. 275, 33–48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuka, M. & Iannacone, M. The role of lymph node sinus macrophages in host defense. Ann. NY Acad. Sci. 1319, 38–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. von Andrian, U. H. & Mackay, C. R. T-Cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Karrer, U. et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice. J. Exp. Med. 185, 2157–2170 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alvarez, D., Vollmann, E. H. & von Andrian, U. H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qi, H., Egen, J. G., Huang, A. Y. C. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Qi, H., Kastenmuller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Heesters, B. A., van der Poel, C. E., Das, A. & Carroll, M. C. Antigen presentation to B cells. Trends Immunol. 37, 844–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Pereira, J. P., Kelly, L. M. & Cyster, J. G. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22, 413–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Cyster, J. G. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11, 989–996 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Clark, S. L. The reticulum of lymph nodes in mice studied with the electron microscope. Am. J. Anat. 110, 217–257 (1962).

    Article  PubMed  Google Scholar 

  31. Farr, A. G., Cho, Y. & de Bruyn, P. P. The structure of the sinus wall of the lymph node relative to its endocytic properties and transmural cell passage. Am. J. Anat. 157, 265–284 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26, 491–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007). References 17, 33 and 34 reveal a role for macrophages within the lymph node SCS in the presentation of large particulate antigens, immune complexes and inactivated viruses to follicular B cells.

    Article  CAS  PubMed  Google Scholar 

  35. Cyster, J. G., Dang, E. V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Gatto, D., Paus, D., Basten, A., Mackay, C. R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Pereira, J. P., Kelly, L. M., Xu, Y. & Cyster, J. G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Yi, T. et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37, 535–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coffey, F., Alabyev, B. & Manser, T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30, 599–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bannard, O. & Cyster, J. G. Germinal centers: programmed for affinity maturation and antibody diversification. Curr. Opin. Immunol. 45, 21–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Heesters, B. A. et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164–1175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sammicheli, S. et al. Inflammatory monocytes hinder antiviral B cell responses. Sci. Immunol. 1, eaah6789 (2016). This study utilizes multiphoton intravital microscopy to analyse the spatiotemporal dynamics of B cell activation upon viral infections. It identifies the type-I-interferon-dependent, CCR2-dependent lymph node recruitment of inflammatory monocytes as a critical inhibitor of antiviral B cell responses.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nothelfer, K., Sansonetti, P. J. & Phalipon, A. Pathogen manipulation of B cells: the best defence is a good offence. Nat. Rev. Microbiol. 13, 173–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez, S. F. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11, 427–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tonti, E. et al. Bisphosphonates target B cells to enhance humoral immune responses. Cell Rep. 5, 323–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Gaya, M. et al. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection. Science 347, 667–672 (2015). This study describes how viral infections disrupt the organization of lymph node SCS macrophages, thus thwarting antibody responses to subsequent antigenic challenge.

    Article  CAS  PubMed  Google Scholar 

  52. Dougan, S. K. et al. Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 503, 406–409 (2013). This paper shows that influenza virus can infect haemagglutinin-specific B cells via the BCR, causing both disruption of antibody secretion and B cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jelicic, K. et al. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-β1 production and FcRL4 expression. Nat. Immunol. 14, 1256–1265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McChesney, M. B., Kehrl, J. H., Valsamakis, A., Fauci, A. S. & Oldstone, M. B. Measles virus infection of B lymphocytes permits cellular activation but blocks progression through the cell cycle. J. Virol. 61, 3441–3447 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McChesney, M. B., Fujinami, R. S., Lampert, P. W. & Oldstone, M. B. Viruses disrupt functions of human lymphocytes. II. Measles virus suppresses antibody production by acting on B lymphocytes. J. Exp. Med. 163, 1331–1336 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Rice, G. P., Schrier, R. D. & Oldstone, M. B. Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc. Natl Acad. Sci. USA 81, 6134–6138 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Küppers, R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat. Rev. Immunol. 3, 801–812 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. Portis, T. & Longnecker, R. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol. 77, 105–114 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caldwell, R. G., Brown, R. C. & Longnecker, R. Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J. Virol. 74, 1101–1113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, C. L. et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2, 155–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Z. et al. Hepatitis C virus protects human B lymphocytes from Fas-mediated apoptosis via E2-CD81 engagement. PLOS ONE 6, e18933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosa, D. et al. Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl Acad. Sci. USA 102, 18544–18549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oliviero, B. et al. Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections. J. Hepatol. 55, 53–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  PubMed  Google Scholar 

  66. Norris, B. A. et al. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity 38, 309–321 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Mitchell, L. A., Henderson, A. J. & Dow, S. W. Suppression of vaccine immunity by inflammatory monocytes. J. Immunol. 189, 5612–5621 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell, L. A., Hansen, R. J., Beaupre, A. J., Gustafson, D. L. & Dow, S. W. Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity. Int. Immunopharmacol. 15, 357–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Sangster, M. Y. et al. Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J. Immunol. 164, 1820–1828 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Hunziker, L. et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat. Immunol. 4, 343–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Lindqvist, M. et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J. Clin. Invest. 122, 3271–3280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coutelier, J. P., Coulie, P. G., Wauters, P., Heremans, H. & van der Logt, J. T. In vivo polyclonal B-lymphocyte activation elicited by murine viruses. J. Virol. 64, 5383–5388 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coutelier, J. P., Johnston, S. J., El Idrissi, M. E. A., El & Pfau, C. J. Involvement of CD4+ cells in lymphocytic choriomeningitis virus-induced autoimmune anaemia and hypergammaglobulinaemia. J. Autoimmun. 7, 589–599 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Moseman, E. A., Wu, T., de La Torre, J. C., Schwartzberg, P. L. & McGavern, D. B. Type I interferon suppresses virus-specific B cell responses by modulating CD8+ T cell differentiation. Sci. Immunol. 1, eaah3565 (2016). This study establishes that virus-induced type I interferon promotes the expansion and differentiation of cytotoxic T lymphocytes that kill antiviral B cells.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Recher, M. et al. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat. Immunol. 5, 934–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Cook, K. D., Kline, H. C. & Whitmire, J. K. NK cells inhibit humoral immunity by reducing the abundance of CD4+ T follicular helper cells during a chronic virus infection. J. Leukoc. Biol. 98, 153–162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rydyznski, C. et al. Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat. Commun. 6, 6375 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Zellweger, R. M., Hangartner, L., Weber, J., Zinkernagel, R. M. & Hengartner, H. Parameters governing exhaustion of rare T cell-independent neutralizing IgM-producing B cells after LCMV infection. Eur. J. Immunol. 36, 3175–3185 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Fallet, B. et al. Interferon-driven deletion of antiviral B cells at the onset of chronic infection. Sci. Immunol. 1, eaah6817 (2016). This paper describes how virus-induced type I interferon drives the deletion of antiviral B cells by supporting their differentiation into short-lived plasma cells.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mandl, J. N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat. Med. 14, 1077–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Moir, S. et al. Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J. Exp. Med. 200, 587–599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bosio, E., Cluning, C. L. & Beilharz, M. W. Low-dose orally administered type I interferon reduces splenic B cell numbers in mice. J. Interferon Cytokine Res. 21, 721–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Muller, F., Aukrust, P., Nordoy, I. & Froland, S. S. Possible role of interleukin-10 (IL-10) and CD40 ligand expression in the pathogenesis of hypergammaglobulinemia in human immunodeficiency virus infection: modulation of IL-10 and Ig production after intravenous Ig infusion. Blood 92, 3721–3729 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Macchia, D. et al. Membrane tumour necrosis factor-alpha is involved in the polyclonal B-cell activation induced by HIV-infected human T cells. Nature 363, 464–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, W. et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat. Immunol. 10, 1008–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qiao, X. et al. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat. Immunol. 7, 302–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. He, B. et al. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J. Immunol. 176, 3931–3941 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Machida, K., Cheng, K. T. H., Pavio, N., Sung, V. M. H. & Lai, M. M. C. Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells. J. Virol. 79, 8079–8089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl Acad. Sci. USA 101, 4262–4267 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Machida, K. et al. Hepatitis C virus (HCV)-induced immunoglobulin hypermutation reduces the affinity and neutralizing activities of antibodies against HCV envelope protein. J. Virol. 82, 6711–6720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Melzi, E. et al. Follicular dendritic cell disruption as a novel mechanism of virus-induced immunosuppression. Proc. Natl Acad. Sci. USA 113, E6238–E6247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Vries, R. D. et al. Measles immune suppression: lessons from the macaque model. PLOS Pathog. 8, e1002885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tatsuo, H., Ono, N. & Yanagi, Y. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J. Virol. 75, 5842–5850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Planz, O., Seiler, P., Hengartner, H. & Zinkernagel, R. M. Specific cytotoxic T cells eliminate B cells producing virus-neutralizing antibodies. Nature 382, 726–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Battegay, M. et al. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J. Immunol. 151, 5408–5415 (1993).

    CAS  PubMed  Google Scholar 

  96. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nat. Rev. Immunol. 1, 126–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. & Balsano, F. Selective killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous antigen-specific T lymphocytes. Nature 345, 258–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Borrow, P., Evans, C. F. & Oldstone, M. B. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J. Virol. 69, 1059–1070 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Odermatt, B., Eppler, M., Leist, T. P., Hengartner, H. & Zinkernagel, R. M. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc. Natl Acad. Sci. USA 88, 8252–8256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roost, H. et al. An acquired immune suppression in mice caused by infection with lymphocytic choriomeningitis virus. Eur. J. Immunol. 18, 511–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Laidlaw, B. J. & Cyster, J. G. Interfer'n with antibody responses. Sci. Immunol. 1, eaaj1836 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Silva for secretarial assistance, V. Cerundolo, F. V. Chisari, L. G. Guidotti, R. Pardi and Z. Shulman for critical reading of the manuscript and all the members of the Iannacone laboratory for helpful discussions. Work in the Iannacone laboratory discussed in this Review was supported by European Research Council grants 281648 and 725038 (to M.I.), Italian Association for Cancer Research (AIRC) grants 15350 and 9965 (to M.I.), Italian Ministry of Health grant GR-2011-02347925 (to M.I.), Italian Ministry of Education grant SIR-RBSI14BAO5 (to M.K.), Fondazione Regionale per la Ricerca Biomedica grant 2015–0010 (to M.I.), the European Molecular Biology Organization (EMBO) Young Investigator Program (M.I.) and a Career Development Award from the Giovanni Armenise-Harvard Foundation (to M.I.).

Author information

Authors and Affiliations

Authors

Contributions

M.I. and M.K. both contributed to the research of data, and the discussion, writing, review and editing of this manuscript.

Corresponding author

Correspondence to Matteo Iannacone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Multiphoton intravital microscopy

A fluorescence imaging technique that enables the study of cellular interactions in real time within living organisms. It uses infrared lasers that facilitate deep-tissue imaging while limiting phototoxicity and photobleaching.

Clodronate-encapsulated liposomes

Liposomes that contain the drug dichloromethylene diphosphonate. These liposomes are ingested by macrophages, resulting in cell death.

Latency

The ability of certain viruses to establish a reversible dormant state in infected cells with minimal production of viral proteins and absence of progeny virus production.

Polyclonal hypergammaglobulinaemia

Increased levels of nonspecific immunoglobulins in serum that typically occur during chronic viral infections and autoimmune diseases.

Pinocytosis

Also known as fluid-phase endocytosis. A process of engulfment of extracellular fluid and its solutes. It can be mediated by an actin-dependent mechanism that can engulf large volumes (macropinocytosis) or by other mechanisms that result in engulfment of smaller volumes (micropinocytosis).

Lymphopenia

The condition of having an abnormally low level of lymphocytes in the blood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuka, M., Iannacone, M. Viral subversion of B cell responses within secondary lymphoid organs. Nat Rev Immunol 18, 255–265 (2018). https://doi.org/10.1038/nri.2017.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing