Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human mini-guts: new insights into intestinal physiology and host–pathogen interactions

Key Points

  • Human 'mini-guts' generated from crypt-based or induced pluripotent stem (iPS) cells functionally recapitulate normal intestinal transport physiology and model pathophysiologic changes following interactions with enteric pathogens

  • iPS-cell-derived intestinal organoids can be used to model intestinal development and engrafted in vivo to differentiate the epithelium along a crypt–villus axis supported by subepithelial and smooth muscle layers

  • 3D enteroids and colonoids derived from intestinal stem cells can be used to measure ion, nutrient and water absorption or secretion as part of normal intestinal transport function

  • Both human intestinal organoids and enteroids or colonoids can be used as models to study enteric bacterial and viral pathogenesis

  • Enteroids and colonoids can be grown on 2D permeable supports to enable apical access to study host–pathogen interactions as well as drug absorption and/or metabolism

  • Stem cell or iPS-cell-derived gastrointestinal organoids from the stomach, pancreas and liver are also being developed as models to study development, infection and regenerative medicine

Abstract

The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5+ intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt–villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host–pathogen interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human intestinal enteroids represent human intestinal tissue.
Figure 2: Enteroids can model transport physiology.
Figure 3: Small intestinal and colonic enteroids can form a 2D monolayer and present a novel model to study intestinal–enteric pathogen interactions.

Similar content being viewed by others

References

  1. Seidler, U. E. Gastrointestinal HCO3 transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr. Opin. Pharmacol. 13, 900–908 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Canny, G. O. & McCormick, B. A. Bacteria in the intestine, helpful residents or enemies from within? Infect. Immun. 76, 3360–33738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heath, J. P. Epithelial cell migration in the intestine. Cell Biol. Int. 20, 139–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, H. & Bjerknes, M. Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat. Rec. 211, 420–426 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Artursson, P. Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79, 476–482 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32, 1083–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Foulke-Abel, J. et al. Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150, 638–649 (2015).

    Article  PubMed  Google Scholar 

  9. In, J. et al. Enterohemorrhagic Escherichia coli reduces mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell. Mol. Gastroenterol. Hepatol. 2, 48–62.e43 (2016).

    Article  PubMed  Google Scholar 

  10. McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6, 1920–1928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Casburn-Jones, A. C. Management of infectious diarrhoea. Gut 53, 296–305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiagarajah, J. R., Donowitz, M. & Verkman, A. S. Secretory diarrhoea: mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 12, 446–457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hilgers, A. R., Conradi, R. A. & Burton, P. S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7, 902–910 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Nataro, J. P., Hicks, S., Phillips, A. D., Vial, P. A. & Sears, C. L. T84 cells in culture as a model for enteroaggregative Escherichia coli pathogenesis. Infect. Immun. 64, 4761–4768 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huet, C., Sahuquillo-Merino, C., Coudrier, E. & Louvard, D. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol. 105, 345–357 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Larregieu, C. A. & Benet, L. Z. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J. 15, 483–497 (2013).

    CAS  Google Scholar 

  18. Sun, D. et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19, 1400–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Awortwe, C., Fasinu, P. S. & Rosenkranz, B. Application of Caco-2 cell line in herb–drug interaction studies: current approaches and challenges. J. Pharm. Pharm. Sci. 17, 1–19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Artursson, P., Palm, K. & Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46, 27–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Hughes, P., Marshall, D., Reid, Y., Parkes, H. & Gelber, C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques 43, 575–586 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Markert, T. et al. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 96, 822–830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaandrager, A. B. et al. Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 118, 108–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. van der Mark, V. A. et al. The lipid flippase heterodimer ATP8B1–CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim. Biophys. Acta 1842, 2378–2386 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erdem, A. L., Avelino, F., Xicohtencatl-Cortes, J. & Giron, J. A. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 189, 7426–7435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Finkbeiner, S. R. et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports 4, 1140–1155 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  30. Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wells, J. M. & Spence, J. R. How to make an intestine. Development 141, 752–760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinagoga, K. L. & Wells, J. M. Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J. 34, 1149–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stelzner, M. et al. A nomenclature for intestinal in vitro cultures. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1359–G1363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zachos, N. C. et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291, 3759–3766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kovbasnjuk, O. et al. Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 4 (Suppl. 1), S3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Foulke-Abel, J. et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 239, 1124–1134 (2014).

    Article  CAS  Google Scholar 

  40. Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Date, S. & Sato, T. Mini-gut organoids: reconstitution of stem cell niche. Annu. Rev. Cell Dev. Biol. 31, 269–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. de Lau, W. et al. Peyer's patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol. Cell. Biol. 32, 3639–3647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Turnberg, L. A., Bieberdorf, F. A., Morawski, S. G. & Fordtran, J. S. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J. Clin. Invest. 49, 557–567 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Turnberg, L. A., Fordtran, J. S., Carter, N. W. & Rector, F. C. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J. Clin. Invest. 49, 548–556 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kunzelmann, K. & Mall, M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol. Rev. 82, 245–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Frizzell, R. A., Field, M. & Schultz, S. G. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. Renal Physiol. 236, F1–F8 (1979).

    Article  CAS  Google Scholar 

  52. Field, M., Fromm, D., Al-Awqati, Q. & Greenough, W. B. Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest. 51, 796–804 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Field, M., Graf, L. H. Jr, Laird, W. J. & Smith, P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc. Natl Acad. Sci. USA 75, 2800–2804 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dharmsathaphorn, K., Mandel, K. G., Masui, H. & McRoberts, J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl cotransport system. J. Clin. Invest. 75, 462–471 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandel, K. G., Dharmsathaphorn, K. & McRoberts, J. A. Characterization of a cyclic AMP-activated Cl tranport pathway in the apical membrane of a human colonic epithelial cell line. J. Biol. Chem. 261, 704–712 (1986).

    CAS  PubMed  Google Scholar 

  56. Dharmsathaphorn, K. & Pandol, S. J. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J. Clin. Invest. 77, 348–354 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Musch, M. W., Arvans, D. L., Wu, G. D. & Chang, E. B. Functional coupling of the downregulated in adenoma Cl/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G202–G210 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Mizutani, T. et al. Real-time analysis of P-glycoprotein-mediated drug transport across primary intestinal epithelium three-dimensionally cultured in vitro. Biochem. Biophys. Res. Commun. 419, 238–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Grant, C. N. et al. Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G664–G677 (2014).

    Article  CAS  Google Scholar 

  60. Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Walker, N. M. et al. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G70–G80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Abba, K., Sinfield, R., Hart, C. A. & Garner, P. Pathogens associated with persistent diarrhoea in children in low and middle income countries: systematic review. BMC Infect. Dis. 9, 88 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fletcher, S. M., McLaws, M.-L. & Ellis, J. T. Prevalence of gastrointestinal pathogens in developed and developing countries: systemic review and meta-analysis. J. Public Health Res. 2, 42–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Page, A.-L. et al. Geographic distribution and mortality risk factors during the cholera outbreak in a rural region of Haiti, 2010–2011. PLoS Negl. Trop. Dis. 9, e0003605 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jenkins, C. et al. Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl. Environ. Microbiol. 81, 3946–3952 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luna-Gierke, R. E. et al. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol. Infect. 142, 2270–2280 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Navarro-Garcia, F. Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli/Shiga toxin-producing E. coli explosive cocktail of high virulence. Microbiol. Spectr. 2, 533–539 (2014).

    Article  CAS  Google Scholar 

  68. Warny, M. et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Martinez, F. Clostridium difficile outbreaks: prevention and treatment strategies. Risk Manag. Healthc. Policy 5, 55–64 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown, K., Valenta, K., Fisman, D., Simor, A. & Daneman, N. Hospital ward antibiotic prescribing and the risks of Clostridium difficile Infection. JAMA Intern. Med. 175, 626–633 (2015).

    Article  PubMed  Google Scholar 

  71. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garner, C. D. et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica Serovar Typhimurium murine model of infection. Infect. Immun. 77, 2691–2702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hodges, K. & Gill, R. Infectious diarrhea cellular and molecular mechanisms. Gut Microbes 1, 4–21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Jiminez, J. A., Uwiera, T. C., Douglas Inglis, G. & Uwiera, R. R. E. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 7, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Engevik, M. A. et al. Human Clostridium difficile infection: altered mucus production and composition. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G510–G524 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Leslie, J. L. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. Engevik, M. A. et al. Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G497–G509 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hayashi, H. et al. Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. J. Gen. Physiol. 123, 491–504 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Forbester, J. L. et al. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect. Immun. 83, 2926–2934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Finkbeiner, S. R. et al. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 3, e00159-12 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yin, Y. et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res. 123, 120–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. VanDussen, K. L. et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Ermund, A., Schutte, A., Johansson, M. E. V., Gustafsson, J. K. & Hansson, G. C. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G341–G347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johansson, M. E. V., Sjövall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stange, Daniel, E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136.e6 (2015).

    Article  PubMed  Google Scholar 

  88. Schlaermann, P. et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 65, 202–213 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, Y.-J. et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep. 6, 1046–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2014).

    Article  PubMed  CAS  Google Scholar 

  95. Park, J.-G. et al. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 50, 2773–2780 (1990).

    CAS  PubMed  Google Scholar 

  96. Leite, M. & Figueiredo, C. A. Method for short-term culture of human gastric epithelial cells to study the effects of Helicobacter pylori. 921, 61–68 (2012).

  97. Graham, D. Y. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World J. Gastroenterol. 20, 5191–204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bertaux-Skeirik, N. et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLOS Pathog. 11, e1004663 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Takaishi, S. et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006–1020 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by NIH grants K01DK106323 (J.G.I.), R01DK026523 (M.D.), R01DK061765 (M.D.), P30DK089502 (M.D.), T32DK007632 (M.D.), UH3TR000503 (M.D.), UH3TR000504 (M.D.), U01DK10316 (M.K.E.), and the Bill and Melinda Gates Foundation: Grand Challenges (M.D., O.K., M.K.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.D. and J.G.I. researched data, contributed to discussion of content and writing, and reviewed/edited the manuscript before submission. J.F.-A. researched data for the article and contributed to writing. M.K.E. reviewed/edited the manuscript before submission. N.C.Z. and O.K. researched data for the article and contributed to discussion of content and writing.

Corresponding author

Correspondence to Mark Donowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

In, J., Foulke-Abel, J., Estes, M. et al. Human mini-guts: new insights into intestinal physiology and host–pathogen interactions. Nat Rev Gastroenterol Hepatol 13, 633–642 (2016). https://doi.org/10.1038/nrgastro.2016.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing