Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stereotactic body radiotherapy treatment of extracranial metastases

Abstract

Radiotherapy is an integral treatment for patients with metastatic cancer, although it is usually reserved for palliation of pain, dyspnoea, oedema, bleeding and neurological symptoms. However, the administration of high-precision radiotherapy, termed stereotactic body radiotherapy (SBRT), has the potential to significantly affect the disease course for some patients with metastatic cancer by delivering high doses of radiation to the secondary tumours with limited high-dose delivery to adjacent healthy tissues. Indeed, such accurate delivery has been firmly established as a therapy for medically inoperable early-stage non-small-cell lung cancer. To date, the technique has demonstrated improvements in controlling metastasis and, in some cases, improved palliation compared with conventionally fractionated radiotherapy. Active areas of research in SBRT include patient selection for curative intent, optimization of SBRT planning techniques, dosing schema and integration of SBRT into systemic therapies. Given the improvements in cytotoxic and targeted therapies over the past decade, studies testing the careful integration of SBRT into standard systemic therapy regimens are needed. Further investigations are also needed to understand the basic biological mechanisms underlying SBRT because they are likely to be different to those mechanisms in conventional radiotherapy.

Key Points

  • Patients with advanced-stage cancer with limited metastases have been shown to benefit from metastasis-directed therapy, usually in the form of surgery

  • For patients with limited metastases that are not resectable or for patients who are not medically fit for surgery, alternative metastasis-directed therapies are needed because standard systemic therapies are rarely curative

  • Stereotactic body radiotherapy (SBRT), in which one or a few high radiation doses are delivered to a very tightly focused region encompassing a tumour, might offer such an alternative

  • SBRT can result in high rates of treated-metastasis control for patients with limited pulmonary, hepatic, adrenal, spinal and multiple-organ metastases

  • SBRT also results in favourable outcomes for patients with metastases from non-small-cell lung cancer, breast cancer, sarcoma, renal cell carcinoma and melanoma

  • Further research is needed to integrate SBRT into the standard treatment paradigms for patients with limited metastatic cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Treatment plans for extracranial SRS/SBRT for spinal metastases.
Figure 3: Treatment plans for extracranial SRS/SBRT for an adrenal metastasis.
Figure 4: Treatment plans for extracranial SRS/SBRT for multiple pulmonary metastases.
Figure 5: Modern SBRT target localization via CT-image-based alignment of patients using stereotactic body frame.
Figure 6: SBRT for large volume metastases.

Similar content being viewed by others

References

  1. Stetler–Stevenson, W. in Cancer Principles and Practice of Oncology 7th edn (eds DeVita, V. T., Hellman S. & Rosenberg, S. A.) 113–127 (Lippincott Williams and Wilkins, Philadelphia, 2005).

    Google Scholar 

  2. Connell, P. P. & Hellman, S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res. 69, 383–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Mehta, N. et al. Analysis of further disease progression in metastatic non-small cell lung cancer: implications for locoregional treatment. Int. J. Oncol. 25, 1677–1683 (2004).

    PubMed  Google Scholar 

  4. Rusthoven, K. E. et al. Is there a role for consolidative stereotactic body radiation therapy following first-line systemic therapy for metastatic lung cancer? A patterns-of-failure analysis. Acta Oncol. 48, 578–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Hellman, S. & Weichselbaum, R. R. Oligometastases. J. Clin. Oncol. 13, 8–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Weichselbaum, R. R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Macdermed, D. M., Weichselbaum, R. R. & Salama, J. K. A rationale for the targeted treatment of oligometastases with radiotherapy. J. Surg. Oncol. 98, 202–206 (2008).

    Article  PubMed  Google Scholar 

  8. The International Registry of Lung Metastases. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).

  9. Fong, Y. et al. Liver resection for colorectal metastases. J. Clin. Oncol. 15, 938–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Tanvetyanon, T. et al. Outcomes of adrenalectomy for isolated synchronous versus metachronous adrenal metastases in non-small-cell lung cancer: a systematic review and pooled analysis. J. Clin. Oncol. 26, 1142–1147 (2008).

    Article  PubMed  Google Scholar 

  11. Wron´ski, M., Arbit, E., Burt, M. & Galicich, J. H. Survival after surgical treatment of brain metastases from lung cancer: a follow-up study of 231 patients treated between 1976 and 1991. J. Neurosurg. 83, 605–616 (1995).

    Article  Google Scholar 

  12. Miller, G. et al. Outcomes after resection of synchronous or metachronous hepatic and pulmonary colorectal metastases. J. Am. Coll. Surg. 205, 231–238 (2007).

    Article  PubMed  Google Scholar 

  13. Shah, S. A. et al. Surgical resection of hepatic and pulmonary metastases from colorectal carcinoma. J. Am. Coll. Surg. 202, 468–475 (2006).

    Article  PubMed  Google Scholar 

  14. Blomgren, H., Lax, I., Näslund, I. & Svanström, R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol. 34, 861–870 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lax, I., Blomgren, H., Näslund, I. & Svanström, R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 33, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Timmerman, R. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303, 1070–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, M. T. et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J. Clin. Oncol. 27, 1585–1591 (2009).

    Article  PubMed  Google Scholar 

  18. Milano, M. T., Katz, A. W., Zhang, H. & Okunieff, P. Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study. Int J. Radiat. Oncol. Biol. Phys. 83, 878–886 (2012).

    Article  PubMed  Google Scholar 

  19. Rusthoven, K. E. et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J. Clin. Oncol. 27, 1579–1584 (2009).

    Article  PubMed  Google Scholar 

  20. Rusthoven, K. E. et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J. Clin. Oncol. 27, 1572–1578 (2009).

    Article  PubMed  Google Scholar 

  21. Salama, J. K. et al. Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. Cancer 118, 2962–2970 (2012).

    Article  PubMed  Google Scholar 

  22. Wang, X. S. et al. Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1–2 trial. Lancet Oncol. 13, 395–402 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chawla, S., Schell, M. C. & Milano, M. T. Stereotactic body radiation for the spine: a review. Am. J. Clin. Oncol. http://dx.doi.org/10.1097/COC.0b013e31822dfd71.

  24. Yamada, Y. et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int. J. Radiat. Oncol. Biol. Phys. 71, 484–490 (2008).

    Article  PubMed  Google Scholar 

  25. Regine, W. F. The radiation oncologist's perspective on stereotactic radiosurgery. Technol. Cancer Res. Treat. 1, 43–49 (2002).

    Article  PubMed  Google Scholar 

  26. Niranjan, A. & Lunsford, L. D. Radiosurgery: where we were, are, and may be in the third millennium. Neurosurgery 46, 531–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Benedict, S. H. et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med. Phys. 37, 4078–4101 (2012).

    Article  Google Scholar 

  28. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  29. Chang, B. K. & Timmerman, R. D. Stereotactic body radiation therapy: a comprehensive review. Am. J. Clin. Oncol. 30, 637–644 (2007).

    Article  PubMed  Google Scholar 

  30. Han, K. et al. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors. Radiother. Oncol. 95, 103–108 (2010).

    Article  PubMed  Google Scholar 

  31. Fuss, M. et al. Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol. Cancer Res. Treat. 3, 59–67 (2004).

    Article  PubMed  Google Scholar 

  32. Keall, P. 4-Dimensional computed tomography imaging and treatment planning. Semin. Radiat. Oncol. 14, 81–90 (2004).

    Article  PubMed  Google Scholar 

  33. Cai, J., Chang, Z., Wang, Z., Paul Segars, W. & Yin, F. F. Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: a feasibility study. Med. Phys. 38, 6384–6394 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kupelian, P. et al. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 67, 1088–1098 (2007).

    Article  PubMed  Google Scholar 

  35. Ge, H., Cai, J., Kelsey, C. R. & Yin, F. Quantification and minimization of uncertainties of internal target volume (ITV) for stereotactic-body radiation therapy (SBRT) of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. http://dx.doi.org/10.1016/j.ijrobp.2012.04.032.

  36. Brock, K. K. Image registration in intensity- modulated, image-guided and stereotactic body radiation therapy. Front. Radiat. Ther. Oncol. 40, 94–115 (2007).

    Article  PubMed  Google Scholar 

  37. Wu, Q. J. et al. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions. Radiat. Oncol. 4, 3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, Q. J., Yoo, S., Kirkpatrick, J. P., Thongphiew, D. & Yin, F. F. Volumetric arc intensity-modulated therapy for spine body radiotherapy: comparison with static intensity-modulated treatment. Int. J. Radiat. Oncol. Biol. Phys. 75, 1596–1604 (2009).

    Article  PubMed  Google Scholar 

  39. Jin, J. Y., Yin, F. F., Ryu, S., Ajlouni, M. & Kim, J. H. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med. Phys. 32, 405–411 (2005).

    Article  PubMed  Google Scholar 

  40. Jiang, S. B. et al. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys. Med. Biol. 48, 1773–1784 (2003).

    Article  PubMed  Google Scholar 

  41. Tian, Y. et al. Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT. Med. Phys. 39, 2754–2760 (2012).

    Article  PubMed  Google Scholar 

  42. Solberg, T. et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Pract. Radiat. Oncol. 2, 2–9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Roper, J. R., Bowsher, J. E., Wilson, J. M., Turkington, T. G. & Yin, F. F. Target localization using scanner-acquired SPECT data. J. Appl. Clin. Med. Phys. 10, 3724 (2012).

    Google Scholar 

  44. Report of Task Group 104 of the Therapy Imaging Committee American Association of Physicists in Medicine. The Role of In-Room kV X-Ray 933 Imaging for Patient Setup and Target Localization [online], (2009).

  45. Barendsen, G. W. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J. Radiat. Oncol. Biol. Phys. 8, 1981–1997 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Dale, R. G. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58, 515–528 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Douglas, B. G. & Fowler, J. F. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat. Res. 66, 401–426 (1976).

    Article  CAS  PubMed  Google Scholar 

  48. Brenner, D. J. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 18, 234–239 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guerrero, M. & Li, X. A. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys. Med. Biol. 49, 4825–4835 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kirkpatrick, J. P., Brenner, D. J. & Orton, C. G. Point/Counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med. Phys. 36, 3381–3384 (2009).

    Article  PubMed  Google Scholar 

  51. Kirkpatrick, J. P., Meyer, J. J. & Marks, L. B. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin. Radiat. Oncol. 18, 240–243 (2008).

    Article  PubMed  Google Scholar 

  52. Park, C., Papiez, L., Zhang, S., Story, M. & Timmerman, R. D. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 847–852 (2008).

    Article  PubMed  Google Scholar 

  53. Wang, J. Z., Huang, Z., Lo, S. S., Yuh, W. T. & Mayr, N. A. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci. Transl. Med. 2, 39ra48 (2010).

    Article  PubMed  Google Scholar 

  54. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Fuks, Z. & Kolesnick, R. Engaging the vascular component of the tumor response. Cancer Cell 8, 89–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Flickinger, J. C., Kondziolka, D., Maitz, A. H. & Lunsford, L. D. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother. Oncol. 63, 347–354 (2002).

    Article  PubMed  Google Scholar 

  57. Flickinger, J. C. et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int. J. Radiat. Oncol. Biol. Phys. 46, 1143–1148 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Levegrün, S., Hof, H., Essig, M., Schlegel, W. & Debus, J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations. Strahlenther. Onkol. 180, 758–767 (2004).

    Article  PubMed  Google Scholar 

  59. Schneider, B. F., Eberhard, D. A. & Steiner, L. E. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J. Neurosurg. 87, 352–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katz, A. W. et al. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int. J. Radiat. Oncol. Biol. Phys. 67, 793–798 (2007).

    Article  PubMed  Google Scholar 

  62. Okunieff, P. et al. Stereotactic body radiation therapy (SBRT) for lung metastases. Acta Oncol. 45, 808–817 (2006).

    Article  PubMed  Google Scholar 

  63. Chang, E. L. et al. Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J. Neurosurg. Spine 7, 151–160 (2007).

    Article  PubMed  Google Scholar 

  64. Chawla, S. et al. Stereotactic body radiotherapy for treatment of adrenal metastases. Int. J. Radiat. Oncol. Biol. Phys. 75, 71–75 (2009).

    Article  PubMed  Google Scholar 

  65. Torok, J., Wegner, R. E., Burton, S. A. & Heron, D. E. Stereotactic body radiation therapy for adrenal metastases: a retrospective review of a noninvasive therapeutic strategy. Future Oncol. 7, 145–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Kao, J. et al. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer 115, 3571–3580 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Corbin, K. et al. Feasibility and toxicity of hypofractionated image-guided radiotherapy for large volume limited metastatic disease practical radiation oncology. Pract. Radiat. Oncol. (in press).

  68. McCammon, R. et al. Observation of a dose-control relationship for lung and liver tumors after stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 73, 112–118 (2009).

    Article  PubMed  Google Scholar 

  69. Hasselle, M. D. et al. Hypofractionated image-guided radiation therapy for patients with limited volume metastatic non-small cell lung cancer. J. Thorac. Oncol. 7, 376–381 (2012).

    Article  PubMed  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  71. Milano, M. T. et al. Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother. Oncol. 91, 301–306 (2009).

    Article  PubMed  Google Scholar 

  72. Goodman, K. A. et al. Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int. J. Radiat. Oncol. Biol. Phys. 78, 486–493 (2010).

    Article  PubMed  Google Scholar 

  73. Wulf, J. et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 45, 838–847 (2006).

    Article  PubMed  Google Scholar 

  74. Wulf, J., Hädinger, U., Oppitz, U., Thiele, W. & Flentje, M. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver. Radiother. Oncol. 66, 141–150 (2003).

    Article  PubMed  Google Scholar 

  75. Herfarth, K. K. et al. Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors. Int. J. Radiat. Oncol. Biol. Phys. 57, 444–451 (2003).

    Article  PubMed  Google Scholar 

  76. Schefter, T. E. & Kavanagh, B. D. Radiation therapy for liver metastases. Semin. Radiat. Oncol. 21, 264–270 (2011).

    Article  PubMed  Google Scholar 

  77. Olsen, C. C. et al. Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 73, 1414–1424 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Stinauer, M. A., Diot, Q., Westerly, D. C., Schefter, T. E. & Kavanagh, B. D. Fluorodeoxyglucose positron emission tomography response and normal tissue regeneration after stereotactic body radiotherapy to liver metastases. Int. J. Radiat. Oncol. Biol. Phys. 83, e613–e618 (2012).

    Article  PubMed  Google Scholar 

  79. Nelson, J. W. et al. Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int. J. Radiat. Oncol. Biol. Phys. 73, 1369–1375 (2009).

    Article  PubMed  Google Scholar 

  80. Ryu, S. et al. Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109, 628–636 (2007).

    Article  PubMed  Google Scholar 

  81. Sahgal, A., Larson, D. A. & Chang, E. L. Stereotactic body radiosurgery for spinal metastases: a critical review. Int. J. Radiat. Oncol. Biol. Phys. 71, 652–665 (2008).

    Article  PubMed  Google Scholar 

  82. Masucci, G. L. et al. Stereotactic body radiotherapy is an effective treatment in reirradiating spinal metastases: current status and practical considerations for safe practice. Expert Rev. Anticancer Ther. 11, 1923–1933 (2011).

    Article  PubMed  Google Scholar 

  83. Yamada, Y. et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 62, 53–61 (2005).

    Article  PubMed  Google Scholar 

  84. Teh, B. et al. The treatment of primary and metastatic renal cell carcinoma (RCC) with image-guided stereotactic body radiation therapy (SBRT). Biomed. Imaging Interv. J. 3, e6 (2007).

    PubMed  PubMed Central  Google Scholar 

  85. Hoyer, M. et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 45, 823–830 (2006).

    Article  PubMed  Google Scholar 

  86. Salama, J. K. et al. An initial report of a radiation dose-escalation trial in patients with one to five sites of metastatic disease. Clin. Cancer Res. 14, 5255–5259 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Milano, M. T., Philip, A. & Okunieff, P. Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int. J. Radiat. Oncol. Biol. Phys. 73, 832–837 (2009).

    Article  PubMed  Google Scholar 

  88. Metcalfe, S. K. et al. Prospective trial of stereotactic body radiation therapy for colorectal oligometastases. Proc. Amer. Radium Soc. S059 (2010).

  89. Lussier, Y. A. et al. MicroRNA expression characterizes oligometastasis(es). PLoS One 6, e28650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  91. Cheruvu, P. et al. Comparison of outcomes in patients with stage III versus oligometastatic stage IV non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 75 (Suppl.), S445 (2009).

    Article  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  93. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  94. De Ruysscher, D. et al. Radical treatment of non-small cell lung cancer patients with synchronous oligometastases: long-term results of a prospective phase II trial (NCT01282450). J. Thorac. Oncol. (in press).

  95. Milano, M. T., Zhang, H., Metcalfe, S. K., Muhs, A. G. & Okunieff, P. Oligometastatic breast cancer treated with curative-intent stereotactic body radiation therapy. Breast Cancer Res. Treat. 115, 601–608 (2009).

    Article  PubMed  Google Scholar 

  96. van der Pool, A. E. et al. Stereotactic body radiation therapy for colorectal liver metastases. Br. J. Surg. 97, 377–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Cheruvu, P. et al. Retrospective review of stereotactic body radiotherapy (SBRT) for lung metastases from colorectal cancer (CRC). Int. J. Radiat. Oncol. Biol. Phys. 78 (Suppl.), S316 (2010).

    Article  Google Scholar 

  98. Kim, M. S. et al. Stereotactic body radiation therapy using three fractions for isolated lung recurrence from colorectal cancer. Oncology 76, 212–219 (2009).

    Article  PubMed  Google Scholar 

  99. Kang, J. K. et al. Oligometastases confined one organ from colorectal cancer treated by SBRT. Clin. Exp. Metastasis 27, 273–278 (2010).

    Article  PubMed  Google Scholar 

  100. Chang, D. T. et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer 117, 4060–4069 (2011).

    Article  PubMed  Google Scholar 

  101. Engels, B. et al. Phase II study of helical tomotherapy for oligometastatic colorectal cancer. Ann. Oncol. 22, 362–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Gerszten, P. C., Burton, S. A., Quinn, A. E., Agarwala, S. S. & Kirkwood, J. M. Radiosurgery for the treatment of spinal melanoma metastases. Stereotact. Funct. Neurosurg. 83, 213–221 (2005).

    Article  PubMed  Google Scholar 

  103. Ranck, M. et al. Stereotactic body radiotherapy for the treatment of oligometastatic renal cell carcinoma. Am. J. Clin. Oncol. http://dx.doi.org/10.1097/COC.0b013e31825d52b2.

  104. Dhakal, S. et al. Stereotactic body radiotherapy for pulmonary metastases from soft-tissue sarcomas: excellent local lesion control and improved patient survival. Int. J. Radiat. Oncol. Biol. Phys. 82, 940–945 (2011).

    Article  PubMed  Google Scholar 

  105. Kano, H. et al. Outcome predictors of gamma knife radiosurgery for renal cell carcinoma metastases. Neurosurgery 69, 1232–1239 (2011).

    Article  PubMed  Google Scholar 

  106. Liew, D. N. et al. Outcome predictors of Gamma Knife surgery for melanoma brain metastases. Clinical article. J. Neurosurg. 114, 769–779 (2011).

    Article  PubMed  Google Scholar 

  107. Gerszten, P. C. et al. Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J. Neurosurg. Spine 3, 288–295 (2005).

    Article  PubMed  Google Scholar 

  108. Stinauer, M. A. et al. Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control. Radiat. Oncol. 6, 34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wersäll, P. J. et al. Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother. Oncol. 77, 88–95 (2005).

    Article  PubMed  Google Scholar 

  110. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon α in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Hudes, G. et al. Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Ballo, M. T. et al. Adjuvant irradiation for cervical lymph node metastases from melanoma. Cancer 97, 1789–1796 (2003).

    Article  PubMed  Google Scholar 

  114. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seung, S. K. et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2—tumor and immunological responses. Sci. Transl. Med. 4, 137ra174 (2012).

    Article  CAS  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  118. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  119. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  120. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, B. et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204, 49–55 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cox, B. W., Jackson, A., Hunt, M., Bilsky, M. & Yamada, Y. Esophageal toxicity from high-dose, single-fraction paraspinal stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 1, e661–667 (2012).

    Article  Google Scholar 

  123. Kong, F. M. et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int. J. Radiat. Oncol. Biol. Phys. 81, 1442–1457 (2011).

    Article  PubMed  Google Scholar 

  124. Timmerman, R. D. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin. Radiat. Oncol. 18, 215–222 (2008).

    Article  PubMed  Google Scholar 

  125. Kavanagh, B. D. et al. Radiation dose-volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S101–S107 (2010).

    Article  PubMed  Google Scholar 

  126. Pan, C. C. et al. Radiation-associated liver injury. Int. J. Radiat. Oncol. Biol. Phys. 76, S94–S100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Forquer, J. A. et al. Brachial plexopathy from stereotactic body radiotherapy in early-stage NSCLC: dose-limiting toxicity in apical tumor sites. Radiother. Oncol. 93, 408–413 (2009).

    Article  PubMed  Google Scholar 

  128. Dunlap, N. E. et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 76, 796–801 (2010).

    Article  PubMed  Google Scholar 

  129. Kirkpatrick, J. P., van der Kogel, A. J. & Schultheiss, T. E. Radiation dose-volume effects in the spinal cord. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S42–S49 (2010).

    Article  PubMed  Google Scholar 

  130. Sahgal, A. et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int. J. Radiat. Oncol. Biol. Phys. http://dx.doi.org/10.1016/j.ijrobp.2012.05.007.

  131. Sahgal, A. et al. Spinal cord tolerance for stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 77, 548–553 (2010).

    Article  PubMed  Google Scholar 

  132. Wulf, J., Baier, K., Mueller, G. & Flentje, M. P. Dose-response in stereotactic irradiation of lung tumors. Radiother. Oncol. 77, 83–87 (2005).

    Article  PubMed  Google Scholar 

  133. Gibbs, I. C. et al. Image-guided robotic radiosurgery for spinal metastases. Radiother. Oncol. 82, 185–190 (2007).

    Article  PubMed  Google Scholar 

  134. Cheruvu, P. et al. Comparison of outcomes in patients with stage III versus limited stage IV non-small cell lung cancer. Radiat. Oncol. 6, 80 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the Review, contributed to the discussion of its content, wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Fang-Fang Yin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, J., Kirkpatrick, J. & Yin, FF. Stereotactic body radiotherapy treatment of extracranial metastases. Nat Rev Clin Oncol 9, 654–665 (2012). https://doi.org/10.1038/nrclinonc.2012.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.166

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer