Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk assessment methods for cardiac surgery and intervention

Key Points

  • Risk models control for heterogeneous patient demographics, comorbidities, and disease-severity profiles within and between institutions, thereby allowing a fair comparison of operative outcomes

  • Risk-prediction models rely on the quality of the databases from which they are developed; incomplete and inaccurate source data might result in overestimation or underestimation of surgical risk

  • Results of trials to compare surgical aortic valve replacement and transcatheter aortic valve implantation (TAVI) suggest that 3-month mortality or survival might be an important end point to model

  • Performance of cardiac risk models might be suboptimal in patients at high surgical risk, and must, therefore, be used with caution when stratifying patients for TAVI

  • New variables, such as mediastinal radiation, liver failure, and frailty, might enhance prediction in high-risk patients, and optimize model utility in selecting patients for TAVI

  • Risk-prediction models and scores might be useful decision-making tools in cardiac surgery and intervention, but are not intended as substitutes for sound clinical judgement

Abstract

Surgical risk models estimate operative outcomes while controlling for heterogeneity in 'case mix' within and between institutions. In cardiac surgery, risk models are used for patient counselling, surgical decision-making, clinical research, quality assurance and improvement, and financial reimbursement. Importantly, risk models are only as good as the databases from which they are derived; physicians and investigators should, therefore, be aware of shortcomings of clinical and administrative databases used for modelling risk estimates. The most frequently modelled outcome in cardiac surgery is 30-day mortality. However, results of randomized trials to compare conventional surgery versus transcatheter aortic valve implantation (TAVI) indicate attrition of surgical patients at 2–4 months postoperatively, suggesting that 3-month survival or mortality might be an appropriate procedural end point worth modelling. Risk models are increasingly used to identify patients who might be better-suited for TAVI. However, the appropriateness of available statistical models in this application is controversial, particularly given the tendency of risk models to misestimate operative mortality in high-risk patient subsets. Incorporation of new risk factors (such as previous mediastinal radiation, liver failure, and frailty) in future surgical or interventional risk-prediction tools might enhance model performance, and thereby optimize patient selection for TAVI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of a congenital cardiac surgery database with errors in operative outcome coding (survival versus death) on estimates of operative mortality.
Figure 2: Assessment of STS score, logistic EuroSCORE, and EuroSCORE II model calibration for predicting in-hospital mortality.

Similar content being viewed by others

References

  1. The Society of Thoracic Surgeons. Executive Summaries [online], (2014).

  2. The Society for Cardiothoracic Surgery in Great Britain and Ireland. Blue Book Online [online], (2014).

  3. Hammermeister, K. E., Burchfiel, C., Johnson, R. & Grover, F. L. Identification of patients at greatest risk for developing major complications at cardiac surgery. Circulation 82 (5 Suppl.), IV380–IV389 (1990).

    CAS  PubMed  Google Scholar 

  4. Iezzoni, L. I. The risks of risk adjustment. JAMA 278, 1600–1607 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Iezzoni, L. I., Ash, A. S., Shwartz, M., Landon, B. E. & Mackiernan, Y. D. Predicting in-hospital deaths from coronary artery bypass graft surgery: do different severity measures give different predictions? Med. Care 36, 28–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Luft, H. S. & Romano, P. S. Chance, continuity, and change in hospital mortality rates: coronary artery bypass graft patients in California hospitals, 1983 to 1989. JAMA 270, 331–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Tu, J. V., Sykora, K. & Naylor, C. D. Assessing the outcomes of coronary artery bypass graft surgery: how many risk factors are enough? Steering committee of the Cardiac Care Network of Ontario. J. Am. Coll. Cardiol. 30, 1317–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Shahian, D. M. et al. Cardiac surgery risk models: a position article. Ann. Thorac. Surg. 78, 1868–1877 (2004).

    Article  PubMed  Google Scholar 

  9. Beyersdorf, F. The future is here: the European Journal of Cardio-thoracic Surgery presents its first app. Eur. J. Cardiothorac. Surg. 39, 617–618 (2011).

    Article  PubMed  Google Scholar 

  10. Hannan, E. L., Racz, M. J., Jollis, J. G. & Peterson, E. D. Using Medicare claims data to assess provider quality for CABG surgery: does it work well enough? Health Serv. Res. 31, 659–678 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dubois, R. W., Rogers, W. H., Moxley, J. H. 3rd, Draper, D. & Brook, R. H. Hospital inpatient mortality: is it a predictor of quality? N. Engl. J. Med. 317, 1674–1680 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Griffith, B. P. et al. The need for accurate risk-adjusted measures of outcome in surgery. Ann. Surg. 222, 593–599 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sox, H. C. & Greenfield, S. Annals of internal medicine comparative effectiveness research: a report from the Institute of Medicine. Ann. Intern. Med. 151, 203–205 (2009).

    Article  PubMed  Google Scholar 

  14. Garber, A. M. & Tunis, S. R. Does comparative-effectiveness research threaten personalized medicine? N. Engl. J. Med. 360, 1925–1927 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. CMS.gov. Transcatheter Aortic Valve Replacement (TAVR) [online], (2014).

  16. Van Mieghem, N. M. & Serruys, P. W. The art of risk stratification in TAVI. Eur. Heart J. 34, 1859–1861 (2013).

    Article  PubMed  Google Scholar 

  17. Shahian, D. M. et al. Public reporting of cardiac surgery performance: part 2--implementation. Ann. Thorac. Surg. 92 (3 Suppl.), S12–S23 (2011).

    Article  PubMed  Google Scholar 

  18. Shahian, D. M., Silverstein, T., Lovett, A. F., Wolf, R. E. & Normand, S.-L. T. Comparison of clinical and administrative data sources for hospital coronary artery bypass graft surgery report cards. Circulation 115, 1518–1527 (2007).

    Article  PubMed  Google Scholar 

  19. The Society of Thoracic Surgeons. STS National Database [online], (2014).

  20. Bridgewater, B., Society of Cardiothoracic Surgery in GB and Ireland. Cardiac registers: the adult cardiac surgery register. Heart 96, 1441–1443 (2010).

    Article  PubMed  Google Scholar 

  21. Society of Cardiothoracic Surgeons of Great Britain and Ireland. Audit and Outcomes [online], (2014).

  22. O'Brien, S. M. et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann. Thorac. Surg. 88 (1 Suppl.), S23–S42 (2009).

    Article  PubMed  Google Scholar 

  23. Shahian, D. M. et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. Ann. Thorac. Surg. 88 (1 Suppl.), S2–S22 (2009).

    Article  PubMed  Google Scholar 

  24. Shahian, D. M. et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 3—valve plus coronary artery bypass grafting surgery. Ann. Thorac. Surg. 88 (1 Suppl.), S43–S62 (2009).

    Article  PubMed  Google Scholar 

  25. Rankin, J. S. et al. The Society of Thoracic Surgeons risk model for operative mortality after multiple valve surgery. Ann. Thorac. Surg. 95, 1484–1490 (2013).

    Article  PubMed  Google Scholar 

  26. Magee, M. J., Wright, C. D., McDonald, D., Fernandez, F. G. & Kozower, B. D. External validation of the Society of Thoracic Surgeons General Thoracic Surgery Database. Ann. Thorac. Surg. 96, 1734–1739 (2013).

    Article  PubMed  Google Scholar 

  27. Tong, B. C. & Harpole, D. Audit, quality control, and performance in thoracic surgery: a North American perspective. Thorac. Surg. Clin. 17, 379–386 (2007).

    Article  PubMed  Google Scholar 

  28. Shahian, D. M. et al. The Society of Thoracic Surgeons National Database. Heart 99, 1494–1501 (2013).

    Article  PubMed  Google Scholar 

  29. Shahian, D. M. et al. The Society of Thoracic Surgeons National Adult Cardiac Database: a continuing commitment to excellence. J. Thorac. Cardiovasc. Surg. 140, 955–959 (2010).

    Article  PubMed  Google Scholar 

  30. Brenner, H., Schmidtmann, I. & Stegmaier, C. Effects of record linkage errors on registry-based follow-up studies. Stat. Med. 16, 2633–2643 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Jacobs, J. P. et al. Successful linking of The Society of Thoracic Surgeons Adult Cardiac Surgery Database to centers for Medicare and Medicaid Services Medicare data. Ann. Thorac. Surg. 90, 1150–1157 (2010).

    Article  PubMed  Google Scholar 

  32. Barringhaus, K. G., Zelevinsky, K., Lovett, A., Normand, S. L. & Ho, K. K. Hospital-specific estimates of risk-adjusted mortality in Massachusetts. Circ. Cardiovasc. Qual. Outcomes 4, 92–98 (2011).

    Article  PubMed  Google Scholar 

  33. Jacobs, J. P. et al. Successful linking of The Society of Thoracic Surgeons Database to Social Security data to examine survival after cardiac operations. Ann. Thorac. Surg. 92, 32–39 (2011).

    Article  PubMed  Google Scholar 

  34. Mack, M. J. et al. Does reporting of coronary artery bypass grafting from administrative databases accurately reflect actual clinical outcomes? J. Thorac. Cardiovasc. Surg. 129, 1309–1317 (2005).

    Article  PubMed  Google Scholar 

  35. Herbert, M. A., Prince, S. L., Williams, J. L., Magee, M. J. & Mack, M. J. Are unaudited records from an outcomes registry database accurate? Ann. Thorac. Surg. 77, 1960–1964 (2004).

    Article  PubMed  Google Scholar 

  36. The Society of Thoracic Surgeons STS National Database and Outcomes Program Participation Manual [online], (2011).

  37. Schaff, H. V, Brown, M. L. & Lenoch, J. R. Data entry and data accuracy. J. Thorac. Cardiovasc. Surg. 140, 960–961 (2010).

    Article  PubMed  Google Scholar 

  38. Stark, J. F & Stark, J. Databases for congenital heart disease: A beginner's guide. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 3, 110–116 (2000).

    Article  PubMed  Google Scholar 

  39. Gallivan, S., Stark, J., Pagel, C., Williams, G. & Williams, W. G. Dead reckoning: can we trust estimates of mortality rates in clinical databases? Eur. J. Cardiothorac. Surg. 33, 334–340 (2008).

    Article  PubMed  Google Scholar 

  40. Brown, M. L., Lenoch, J. R. & Schaff, H. V. Variability in data: the Society of Thoracic Surgeons National Adult Cardiac Surgery Database. J. Thorac. Cardiovasc. Surg. 140, 267–273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. The Society of Thoracic Surgeons. Adult Cardiac Surgery Data Specifications [online], (2014).

  42. Roques, F. et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 15, 816–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Roques, F., Michel, P., Goldstone, A. R. & Nashef, S. A. The logistic EuroSCORE. Eur. Heart J. 24, 881–882 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Nashef, S. A. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg. 41, 734–744 (2012).

    Article  PubMed  Google Scholar 

  45. Osswald, B. R. et al. Overestimation of aortic valve replacement risk by EuroSCORE: implications for percutaneous valve replacement. Eur. Heart J. 30, 74–80 (2009).

    Article  PubMed  Google Scholar 

  46. CMS.gov. MEDPAR [online], (2013).

  47. Fetter, R. & Freeman, J. Diagnosis related groups: product line management within hospitals. Acad. Manag. Rev. 11, 41–54 (1986).

    Article  CAS  Google Scholar 

  48. UHC. UHC.edu [online], (2014).

  49. Healthcare Cost and Utilization Project. Overview of the National (Nationwide) Inpatient Sample (NIS) [online], (2014).

  50. Raftery, J., Roderick, P. & Stevens, A. Potential use of routine databases in health technology assessment. Health Technol. Assess. 9, 1–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Romano, P. S. et al. The California Hospital Outcomes Project: using administrative data to compare hospital performance. Jt Comm. J. Qual. Improv. 21, 668–682 (1995).

    CAS  PubMed  Google Scholar 

  52. Aylin, P., Bottle, A. & Majeed, A. Use of administrative data or clinical databases as predictors of risk of death in hospital: comparison of models. BMJ 334, 1044 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hannan, E. L, Kulburn, H. Jr., Lindsey, M. L. & Lewis, R. Clinical versus administrative data bases for CABG surgery. Does it matter? Med. Care 30, 892–907 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Geraci, J. M. et al. Mortality after cardiac bypass surgery: prediction from administrative versus clinical data. Med. Care 43, 149–158 (2005).

    Article  PubMed  Google Scholar 

  55. Siregar, S. et al. The Dutch hospital standardised mortality ratio (HSMR) method and cardiac surgery: benchmarking in a national cohort using hospital administration data versus a clinical database. Heart 100, 702–710 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Pagano, D. & Gale, C. P. The death of administrative data for benchmarking cardiothoracic mortality? Heart 100, 680–682 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Hartz, A. J. & Kuhn, E. M. Comparing hospitals that perform coronary artery bypass surgery: the effect of outcome measures and data sources. Am. J. Public Health 84, 1609–1614 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, R. H. et al. Identification of preoperative variables needed for risk adjustment of short-term mortality after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 28, 1478–1487 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Pasquali, S. K. et al. Differential case ascertainment in clinical registry versus administrative data and impact on outcomes assessment for pediatric cardiac operations. Ann. Thorac. Surg. 95, 197–203 (2013).

    Article  PubMed  Google Scholar 

  60. Hawker, G. A., Coyte, P. C., Wright, J. G., Paul, J. E. & Bombardier, C. Accuracy of administrative data for assessing outcomes after knee replacement surgery. J. Clin. Epidemiol. 50, 265–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Lawthers, A. G. et al. Identification of in-hospital complications from claims data. Is it valid? Med. Care 38, 785–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Iezzoni, L. I. et al. Identifying complications of care using administrative data. Med. Care 32, 700–715 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Kozower, B. D. et al. Predicted risk of mortality models: surgeons need to understand limitations of the University HealthSystem Consortium models. J. Am. Coll. Surg. 209, 551–556 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Iezzoni, L. I. et al. Comorbidities, complications and coding bias: does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA 267, 2197–2203 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Iezzoni, L. I. Using risk-adjusted outcomes to assess clinical practice: an overview of issues pertaining to risk adjustment. Ann. Thorac. Surg. 58, 1822–1826 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Iezzoni, L. I. Assessing quality using administrative data. Ann. Intern. Med. 127, 666–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Zhan, C., Elizhauser, A., Friedman, B., Houchens, R. & Chiang, Y. P. Modifying DRG-PPS to include only diagnoses present on admission: financial implications and challenges. Med. Care 45, 288–291 (2007).

    Article  PubMed  Google Scholar 

  68. Romano, P. S. & Chan, B. K. Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool? Heal. Serv. Res. 34, 1469–1489 (2000).

    CAS  Google Scholar 

  69. Hannan, E. L. et al. Assessment of coronary artery bypass graft surgery performance in New York. Is there a bias against taking high-risk patients? Med. Care 35, 49–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Parsonnet, V., Dean, D. & Bernstein, A. D. A method of uniform stratification of risk for evaluating the results of surgery in acquired adult heart disease. Circulation 79, I3–I12 (1989).

    CAS  PubMed  Google Scholar 

  71. Kowalik, M. M. & Lango, R. Genotype assessment as a tool for improved risk prediction in cardiac surgery. J. Cardiothorac. Vasc. Anesth. 28, 163–168 (2014).

    Article  PubMed  Google Scholar 

  72. Nilsson, J. et al. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J. Thorac. Cardiovasc. Surg. 132, 12–19 (2006).

    Article  PubMed  Google Scholar 

  73. Shroyer, A. L. et al. The Society of Thoracic Surgeons: 30-day operative mortality and morbidity risk models. Ann. Thorac. Surg. 75, 1856–1864 (2003).

    Article  PubMed  Google Scholar 

  74. O'Connor, G. T. et al. A regional intervention to improve the hospital mortality associated with coronary artery bypass graft surgery. The New England Cardiovascular Disease Study Group. JAMA 275, 841–846 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Hannan, E. L. et al. The New York risk score for in-hospital and 30-day mortality for coronary artery bypass graft surgery. Ann. Thorac. Surg. 95, 46–52 (2013).

    Article  PubMed  Google Scholar 

  76. Nilsson, J., Algotsson, L., Höglund, P., Lührs, C. & Brandt, J. Comparison of 19 pre-operative risk stratification models in open-heart surgery. Eur. Heart J. 27, 867–874 (2006).

    Article  PubMed  Google Scholar 

  77. Adams, D. H. et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370, 1790–1798 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kolh, P. Importance of risk stratification models in cardiac surgery. Eur. Heart J. 27, 768–769 (2006).

    Article  PubMed  Google Scholar 

  79. Clark, R. E. Calculating risk and outcome: The Society of Thoracic Surgeons database. Ann. Thorac. Surg. 62 (Suppl.), S2–S5 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Harrell, F. E. Jr, Lee, K. L., Matchar, D. B. & Reichert, T. A. Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat. Rep. 69, 1071–1077 (1985).

    PubMed  Google Scholar 

  81. Ranucci, M., Castelvecchio, S., Menicanti, L., Frigiola, A. & Pelissero, G. Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony. Circulation 119, 3053–3061 (2009).

    Article  PubMed  Google Scholar 

  82. Block, P. C. et al. Identification of variables needed to risk adjust outcomes of coronary interventions: evidence-based guidelines for efficient data collection. J. Am. Coll. Cardiol. 17, 721–722 (1998).

    Google Scholar 

  83. Dupuis, J. Y. Predicting outcomes in cardiac surgery: risk stratification matters? Curr. Opin. Cardiol. 23, 560–567 (2008).

    Article  PubMed  Google Scholar 

  84. Ivanov, J., Tu, J. V. & Naylor, C. D. Ready-made, recalibrated, or remodeled? Issues in the use of risk indexes for assessing mortality after coronary artery bypass graft surgery. Circulation 99, 2098–2104 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Brown, M. L. et al. Is the European System for Cardiac Operative Risk Evaluation model valid for estimating the operative risk of patients considered for percutaneous aortic valve replacement? J. Thorac. Cardiovasc. Surg. 136, 566–571 (2008).

    Article  PubMed  Google Scholar 

  86. Osnabrugge, R. L. et al. Performance of EuroSCORE II in a large US database: implications for transcatheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 46, 400–408 (2014).

    Article  PubMed  Google Scholar 

  87. Dewey, T. M. et al. Reliability of risk algorithms in predicting early and late operative outcomes in high-risk patients undergoing aortic valve replacement. J. Thorac. Cardiovasc. Surg. 135, 180–187 (2008).

    Article  PubMed  Google Scholar 

  88. Hickey, G. L. et al. Dynamic prediction modeling approaches for cardiac surgery. Circ. Cardiovasc. Qual. Outcomes 6, 649–658 (2013).

    Article  PubMed  Google Scholar 

  89. Siregar, S. et al. Performance of the original EuroSCORE. Eur. J. Cardiothorac. Surg. 41, 746–754 (2012).

    Article  PubMed  Google Scholar 

  90. Leontyev, S. et al. Aortic valve replacement in octogenarians: utility of risk stratification with EuroSCORE. Ann. Thorac. Surg. 87, 1440–1445 (2009).

    Article  PubMed  Google Scholar 

  91. Afilalo, J. et al. Addition of frailty and disability to cardiac surgery risk scores identifies elderly patients at high risk of mortality or major morbidity. Circ. Cardiovasc. Qual. Outcomes 5, 222–228 (2012).

    Article  PubMed  Google Scholar 

  92. Hartz, R. S., Rao, A. V, Plomondon, M. E., Grover, F. L. & Shroyer, A. L. W. Effects of race, with or without gender, on operative mortality after coronary artery bypass grafting: a study using The Society of Thoracic Surgeons National database. Ann. Thorac. Surg. 71, 512–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Prabhakar, G. et al. The risks of moderate and extreme obesity for coronary artery bypass grafting outcomes: a study from the Society of Thoracic Surgeons' database. Ann. Thorac. Surg. 74, 1125–1130 (2002).

    Article  PubMed  Google Scholar 

  94. Hannan, E. L., Kumar, D., Racz, M., Siu, A. L. & Chassin, M. R. New York State's Cardiac Surgery Reporting System: four years later. Ann. Thorac. Surg. 58, 1852–1857 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Hannan, E. L., Kilburn, H., Racz, M., Shields, E. & Chassin, M. R. Improving the outcomes of coronary artery bypass surgery in New York State. JAMA 271, 761–766 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Altman, L. K. Heart-surgery death rates decline in New York. [online], (1990).

    Google Scholar 

  97. Hannan, E. L., Siu, A. L., Kumar, D., Kilburn, H. Jr. & Chassin, M. R. The decline in coronary artery bypass graft surgery mortality in New York State. The role of surgeon volume. JAMA 273, 209–213 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Peterson, E. D., DeLong, E. R., Jollis, J. G., Muhlbaier, L. H. & Mark, D. B. The effects of New York's bypass surgery provider profiling on access to care and patient outcomes in the elderly. J. Am. Coll. Cardiol. 32, 993–999 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Shahian, D. M. et al. Public reporting of cardiac surgery performance: part 1--history, rationale, consequences. Ann. Thorac. Surg. 92 (Suppl.), S2–S11 (2011).

    Article  PubMed  Google Scholar 

  100. Fung, C. H., Lim, Y. W., Mattke, S., Damberg, C. & Shekelle, P. G. Systematic review: the evidence that publishing patient care performance data improves quality of care. Ann. Intern. Med. 148, 111–123 (2008).

    Article  PubMed  Google Scholar 

  101. Schneider, E. C. & Epstein, A. M. Influence of cardiac-surgery performance reports on referral practices and access to care: a survey of cardiovascular specialists. N. Engl. J. Med. 335, 251–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Guru, V., Naylor, C. D., Fremes, S. E., Teoh, K. & Tu, J. V. Publicly reported provider outcomes: the concerns of cardiac surgeons in a single-payer system. Can. J. Cardiol. 25, 33–38 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Burack, J. H., Impellizzeri, P., Homel, P. & Cunningham, J. N. Jr. Public reporting of surgical mortality: a survey of New York State cardiothoracic surgeons. Ann. Thorac. Surg. 68, 1195–1200 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Romano, P. S. et al. Impact of public reporting of coronary artery bypass graft surgery performance data on market share, mortality, and patient selection. Med. Care 49, 1118–1125 (2011).

    Article  PubMed  Google Scholar 

  105. Omoigui, N. A. et al. Outmigration for coronary bypass surgery in an era of public dissemination of clinical outcomes. Circulation 93, 27–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Li, Z. et al. Impact of public reporting on access to coronary artery bypass surgery: the California Outcomes Reporting Program. Ann. Thorac. Surg. 89, 1131–1138 (2010).

    Article  PubMed  Google Scholar 

  107. Hannan, E. L., Sarrazin, M. S., Doran, D. R. & Rosenthal, G. E. Provider profiling and quality improvement efforts in coronary artery bypass graft surgery: the effect on short-term mortality among Medicare beneficiaries. Med. Care 41, 1164–1172 (2003).

    Article  PubMed  Google Scholar 

  108. Grover, F. L. et al. A decade's experience with quality improvement in cardiac surgery using the Veterans Affairs and Society of Thoracic Surgeons National Databases. Ann. Surg. 234, 464–474 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guru, V. et al. Public versus private institutional performance reporting: what is mandatory for quality improvement? Am. Heart J. 152, 573–578 (2006).

    Article  PubMed  Google Scholar 

  110. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002).

    Article  PubMed  Google Scholar 

  111. Cribier, A. et al. Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis. J. Am. Coll. Cardiol. 43, 698–703 (2004).

    Article  PubMed  Google Scholar 

  112. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Kodali, S. K. et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 366, 1686–1695 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Makkar, R. R. et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N. Engl. J. Med. 366, 1696–1704 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Moat, N. E. et al. Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis: the U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry. J. Am. Coll. Cardiol. 58, 2130–2138 (2011).

    Article  PubMed  Google Scholar 

  117. Gilard, M. et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 366, 1705–1715 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Popma, J. J. et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63, 1972–1981 (2014).

    Article  PubMed  Google Scholar 

  119. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  120. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  121. Iung, B. & Vahanian, A. Towards improved risk scores: the quest for the grail continues. Eur. Heart J. 34, 10–12 (2013).

    Article  PubMed  Google Scholar 

  122. Ye, J., Soon, J. L. & Webb, J. Aortic valve replacement vs. transcatheter aortic valve implantation: patient selection. Ann. Cadiothorac. Surg. 1, 194–199 (2012).

    Google Scholar 

  123. van Gameren, M. et al. Do we need separate risk stratification models for hospital mortality after heart valve surgery? Ann. Thorac. Surg. 85, 921–930 (2008).

    Article  PubMed  Google Scholar 

  124. Howell, N. J. et al. The new EuroSCORE II does not improve prediction of mortality in high-risk patients undergoing cardiac surgery: a collaborative analysis of two European centres. Eur. J. Cardiothorac. Surg. 44, 1006–1011 (2013).

    Article  PubMed  Google Scholar 

  125. Piazza, N. et al. Relationship between the logistic EuroSCORE and the Society of Thoracic Surgeons Predicted Risk of Mortality score in patients implanted with the CoreValve ReValving system—a Bern-Rotterdam Study. Am. Heart J. 159, 323–329 (2010).

    Article  PubMed  Google Scholar 

  126. Antman, K. et al. Selection bias in clinical trials. J. Clin. Oncol. 3, 1142–1147 (1985).

    Article  CAS  PubMed  Google Scholar 

  127. Peach, G., Griffin, M., Jones, K. G., Thompson, M. M. & Hinchliffe, R. J. Diagnosis and management of peripheral arterial disease. BMJ 345, e5208 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Kumar, A. & Srivastava, U. Role of routine laboratory investigations in preoperative evaluation. J. Anaesthesiol. Clin. Pharmacol. 27, 174–179 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. McCarney, R. et al. The Hawthorne Effect: a randomised, controlled trial. BMC Med. Res. Methodol. 7, 30 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Roethlisberger, F. J., Dickson, W. J., Wright, H. A. & Pforzheimer, C. H. Management and the Worker: an Account of a Research Program Conducted by the Western Electric Company, Hawthorne Works, Chicago (Harvard University Press, 1939).

    Google Scholar 

  131. Choi, E. K. et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J. Am. Coll. Cardiol. 52, 357–365 (2008).

    Article  PubMed  Google Scholar 

  132. Macaron, C. et al. Safety of cardiac surgery for patients with cirrhosis and Child-Pugh scores less than 8. Clin. Gastroenterol. Hepatol. 10, 535–539 (2012).

    Article  PubMed  Google Scholar 

  133. Kempfert, J. et al. Transapical aortic valve implantation: therapy of choice for patients with aortic stenosis and porcelain aorta? Ann. Thorac. Surg. 90, 1457–1461 (2010).

    Article  PubMed  Google Scholar 

  134. Girardi, L. N., Krieger, K. H., Mack, C. A. & Isom, O. W. No-clamp technique for valve repair or replacement in patients with a porcelain aorta. Ann. Thorac. Surg. 80, 1688–1692 (2005).

    Article  PubMed  Google Scholar 

  135. van Mieghem, N. M. et al. The SURTAVI model: proposal for a pragmatic risk stratification for patients with severe aortic stenosis. EuroIntervention 8, 258–266 (2012).

    Article  PubMed  Google Scholar 

  136. Sündermann, S. et al. Comprehensive assessment of frailty for elderly high-risk patients undergoing cardiac surgery. Eur. J. Cardiothorac. Surg. 39, 33–37 (2011).

    Article  PubMed  Google Scholar 

  137. Sündermann, S. H. et al. Frailty is a predictor of short- and mid-term mortality after elective cardiac surgery independently of age. Interact.Cardiovasc. Thorac. Surg. 18, 580–585 (2014).

    Article  PubMed  Google Scholar 

  138. Afilalo, J. et al. Gait speed as an incremental predictor of mortality and major morbidity in elderly patients undergoing cardiac surgery. J. Am. Coll. Cardiol. 56, 1668–1676 (2010).

    Article  PubMed  Google Scholar 

  139. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Ahmed, N., Mandel, R. & Fain, M. J. Frailty: an emerging geriatric syndrome. Am. J. Med. 120, 748–753 (2007).

    Article  PubMed  Google Scholar 

  141. Jain, R., Duval, S. & Adabag, S. How accurate is the eyeball test? A comparison of physician's subjective assessment versus statistical methods in estimating mortality risk after cardiac surgery. Circ. Cardiovasc. Qual. Outcomes 7, 151–156 (2014).

    Article  PubMed  Google Scholar 

  142. Gabrielle, F. et al. Is the Parsonnet's score a good predictive score of mortality in adult cardiac surgery: assessment by a French multicentre study. Eur. J. Cardiothorac. Surg. 11, 406–414 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Grover, F. L., Shroyer, A. L. W. & Hammermeister, K. E. Calculating risk and outcome: the Veterans Affairs database. Ann. Thorac. Surg. 62, S6–S11 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Higgins, T. L. et al. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients. A clinical severity score. JAMA 267, 2344–2348 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Magovern, J. A. et al. A model that predicts morbidity and mortality after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 28, 1147–1153 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. O'Connor, G. T. et al. Multivariate prediction of in-hospital mortality associated with coronary artery bypass graft surgery. Northern New England Cardiovascular Disease Study Group. Circulation 85, 2110–2118 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Ambler, G. et al. Generic, simple risk stratification model for heart valve surgery. Circulation 112, 224–231 (2005).

    Article  PubMed  Google Scholar 

  148. Kötting, J. et al. German Aortic Valve Score: a new scoring system for prediction of mortality related to aortic valve procedures in adults. Eur. J. Cardiothorac. Surg. 43, 971–977 (2013).

    Article  PubMed  Google Scholar 

  149. Capodanno, D. et al. A simple risk tool (the OBSERVANT score) for prediction of 30-day mortality after transcatheter aortic valve replacement. Am. J. Cardiol. 113, 1851–1858 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.M.T. and H.V.S. researched data for the article and wrote the manuscript. All the authors made substantial contributions to discussion of the content, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Hartzell V. Schaff.

Ethics declarations

Competing interests

The Mayo Clinic Division of Cardiovascular Surgery has research relationships with Edwards Lifesciences, Medtronic, and St. Jude Medical. R.M.S. is principal investigator for the FDA trial of the Sorin PERCEVAL valve, a member of the steering committee for the St. Jude PORTICO trial, a member of the clinical selection committee for the Abbott COAPT trial, and Mayo Clinic principal investigator for the Edwards Lifesciences PARTNER II trial. N.M.T., K.L.G., and H.V.S. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalji, N., Suri, R., Greason, K. et al. Risk assessment methods for cardiac surgery and intervention. Nat Rev Cardiol 11, 704–714 (2014). https://doi.org/10.1038/nrcardio.2014.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing