Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

New PARP targets for cancer therapy

Abstract

Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD+ as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and structural elements of the poly(ADP-ribose) polymerase (PARP) catalytic domain.
Figure 2: Two forms of ADP-ribose modifications.
Figure 3: Cellular functions of the poly(ADP-ribose) polymerase (PARP) family.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rouleau, M., Patel, A., Hendzel, M., Kaufmann, S. & Poirier, G. PARP inhibition: PARP1 and beyond. Nature Rev. Cancer 10, 293–301 (2010).

    Article  CAS  Google Scholar 

  2. Bürkle, A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 272, 4576–4589 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Kleine, H. et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Marsischky, G. T., Wilson, B. A. & Collier, R. J. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J. Biol. Chem. 270, 3247–3254 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Otto, H. et al. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genom. 6, 139 (2005).

    Article  CAS  Google Scholar 

  6. Wahlberg, E. et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nature Biotech. 30, 283–288 (2012).

    Article  CAS  Google Scholar 

  7. Ruf, A., Rolli, V., de Murcia, G. & Schulz, G. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. J. Mol. Biol. 278, 57–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Han, S. & Tainer, J. A. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int. J. Med. Microbiol. 291, 523–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alvarez-Gonzalez, R. & Jacobson, M. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 26, 3218–3224 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Sakura, H. et al. Natural occurence of a biopolymer, poly (adenosine diphosphate ribose). Nucleic Acids Res. 4, 2903–2915 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Affar, E. et al. Immunological determination and size characterization of poly(ADP-ribose) synthesized in vitro and in vivo. Biochim. Biophys. Acta 1428, 137–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Gibson, B. & Kraus, W. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  Google Scholar 

  14. Malanga, M. & Althaus, F. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol. 83, 354–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Stilmann, M. et al. A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IκB kinase activation. Mol. Cell 36, 365–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kotova, E., Jarnik, M. & Tulin, A. Poly (ADP-ribose) polymerase 1 is required for protein localization to Cajal body. PLoS genet. 5, e1000387 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Leung, A. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, P., Coughlin, M. & Mitchison, T. J. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol. Biol. Cell 20, 4575–4585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Z. et al. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26, 235–240 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ahel, I. et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451, 81–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Karras, G. et al. The macro domain is an ADP-ribose binding module. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pleschke, J., Kleczkowska, H., Strohm, M. & Althaus, F. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40974–40980 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Barkauskaite, E., Jankevicius, G., Ladurner, A., Ahel, I. & Timinszky, G. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J. 280, 3491–3507 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Letunic, I., Doerks, T. & Bork, P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, 5 (2012).

    Article  CAS  Google Scholar 

  26. Dani, N. et al. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc. Natl Acad. Sci. USA 106, 4243–4248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forst, A. et al. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21, 462–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Neuvonen, M. & Ahola, T. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J. Mol. Biol. 385, 212–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Feijs, K., Verheugd, P. & Lüscher, B. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J. 280, 3519–3529 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, Q. & Barbieri, J. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu. Rev. Microbiol. 62, 271–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Tiemann, B. et al. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J. Bacteriol. 186, 7262–7272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Depping, R., Lohaus, C., Meyer, H. & Rüger, W. The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem. Biophys. Res. Commun. 335, 1217–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Haigis, M. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Liszt, G., Ford, E., Kurtev, M. & Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313–21320 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Glowacki, G. et al. The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci. 11, 1657–1670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terashima, M., Yamamori, C. & Shimoyama, M. ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase. Eur. J. Biochem. 231, 242–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Terashima, M. et al. ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur. J. Biochem. 204, 305–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, H., Graves, D., Robson, R. & Huiatt, T. ADP-ribosylation of the intermediate filament protein desmin and inhibition of desmin assembly in vitro by muscle ADP-ribosyltransferase. Biochem. Biophys. Res. Commun. 197, 570–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Gregory, H. L. & Barry, E. L. ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress. Eur. J. Biochem. 186, 205–211 (1989).

    Article  Google Scholar 

  40. Laitusis, A., Brostrom, M. & Brostrom, C. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J. Biol. Chem. 274, 486–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Ledford, B. & Leno, G. ADP-ribosylation of the molecular chaperone GRP78/BiP. Mol. Cell. Biochem. 138, 141–148 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Chambers, J., Petrova, K., Tomba, G., Vendruscolo, M. & Ron, D. ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J. Cell Biol. 198, 371–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lupi, R., Corda, D. & Di Girolamo, M. Endogenous ADP-ribosylation of the G protein β subunit prevents the inhibition of type 1 adenylyl cyclase. J. Biol. Chem. 275, 9418–9424 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Lupi, R. et al. Endogenous mono-ADP-ribosylation of the free Gβγ prevents stimulation of phosphoinositide 3-kinase-gamma and phospholipase C-β2 and is activated by G-protein-coupled receptors. Biochem. J. 367, 825–832 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bondarenko, V. A. et al. Residues within the polycationic region of cGMP phosphodiesterase γ subunit crucial for the interaction with transducin alpha subunit. Identification by endogenous ADP-rybosylation and site directed mutagenesis. J. Biol. Chem. 272, 15856–15864 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Bondarenko, V., Yamazaki, M., Hayashi, F. & Yamazaki, A. Suppression of GTP/T alpha-dependent activation of cGMP phosphodiesterase by ADP-ribosylation by its gamma subunit in amphibian rod photoreceptor membranes. Biochemistry 38, 7755–7763 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Dani, N. et al. Mono-ADP-ribosylation of the G protein βγ dimer is modulated by hormones and inhibited by Arf6. J. Biol. Chem. 286, 5995–6005 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Altmeyer, M., Messner, S., Hassa, P., Fey, M. & Hottiger, M. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 37, 3723–3738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Messner, S. et al. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38, 6350–6362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tao, Z. Gao, P. & Liu, H.-w. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. J. Am. Chem. Soc. 131, 14258–14260 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Jwa, M. & Chang, P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nature Cell Biol. 14, 1223–1230 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y. H. & Chang, P. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nature Commun. 4, 2240 (2013).

    Article  CAS  Google Scholar 

  53. Luo, X. & Kraus, W. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417–432 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Scarpa, E., Fabrizio, G. & Di Girolamo, M. A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J. 280, 3551–3562 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Dani, N., Barbosa, A. J., Del Rio, A. & Di Girolamo, M. ADP-ribosylated proteins as old and new drug targets for anticancer therapy: the example of ARF6. Curr. Pharm. Des. 19, 624–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Seo, G. et al. Reciprocal Inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14, 435–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Verheugd, P. et al. Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nature Commun. 4, 1683 (2013).

    Article  CAS  Google Scholar 

  58. Barbarulo, A. et al. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32, 4231–4242 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Goenka, S. & Boothby, M. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc. Natl Acad. Sci. USA 103, 4210–4215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aguiar, R. et al. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood 96, 4328–4334 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kickhoefer, V. A. et al. The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J. Cell Biol. 146, 917–928 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tuncel, H. et al. PARP6, a mono(ADP-ribosyl) transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. Int. J. Oncol. 41, 2079–2086 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Ma, Q., Baldwin, K., Renzelli, A., McDaniel, A. & Dong, L. TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem. Biophys. Res. Commun. 289, 499–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. MacPherson, L. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 41, 1604–1621 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Tsai, Y. & Weissman, A. The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer 1, 764–778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Papandreou, I. et al. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Paola, S., Micaroni, M., Di Tullio, G., Buccione, R. & Di Girolamo, M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PloS one 7, e37352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kauppinen, T. et al. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc. Natl Acad. Sci. USA 103, 7136–7141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cohen-Armon, M. et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol. Cell 25, 297–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Yeh, T. Y., Sbodio, J. I. & Chi, N. W. Mitotic phosphorylation of tankyrase, a PARP that promotes spindle assembly, by GSK3. Biochem. Biophys. Res. Commun. 350, 574–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Patterson, J., Palombella, V., Fritz, C. & Normant, E. IPI-504, a novel and soluble HSP-90 inhibitor, blocks the unfolded protein response in multiple myeloma cells. Cancer Chemother. Pharmacol. 61, 923–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Obeng, E. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H. & Takekawa, M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nature Cell Biol. 10, 1324–1332 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kathrin, T. et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154, 859–874 (2013).

    Article  CAS  Google Scholar 

  79. Wilson, W. & Hay, M. Targeting hypoxia in cancer therapy. Nature Rev. Cancer 11, 393–410 (2011).

    Article  CAS  Google Scholar 

  80. Caravita, T., de Fabritiis, P., Palumbo, A., Amadori, S. & Boccadoro, M. Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nature Clin. Pract. Oncol. 3, 374–387 (2006).

    Article  CAS  Google Scholar 

  81. Fournier, M.-J., Gareau, C. & Mazroui, R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell. Int. 10, 12 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lin, H. & Gregory, J. H. Correction: MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  83. Li, L., Yu, C., Gao, H. & Li, Y. Argonaute proteins: potential biomarkers for human colon cancer. BMC Cancer 10, 38 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cheng, N., Li, Y. & Han, Z.-G. Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma. Hepatology 57, 1906–1918 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Benhamed, M., Herbig, U., Ye, T., Dejean, A. & Bischof, O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nature Cell Biol. 14, 266–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, X., Graves, P. & Zeng, Y. Overexpression of human Argonaute2 inhibits cell and tumor growth. Biochim. Biophys. Acta 1830, 2553–2561 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Völler, D., Reinders, J., Meister, G. & Bosserhoff, A. K. Strong reduction of AGO2 expression in melanoma and cellular consequences. Br. J. Cancer 109, 3116–3124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yu, M. et al. PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation. Oncogene 24, 1982–1993 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Vita, M. & Henriksson, M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16, 318–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Chou, H.-Y. E., Chou, H. & Lee, S.-C. CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10). J. Biol. Chem. 281, 15201–15207 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Herzog, N. et al. Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro-apoptotic function. FEBS J. 280, 1330–1343 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Kleine, H. et al. Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Commun. Signal. 10, 28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer 7, 961–967 (2007).

    Article  CAS  Google Scholar 

  94. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533–1541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sui, X. et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Selvakumaran, M., Amaravadi, R., Vasilevskaya, I. & O'Dwyer, P. Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin. Cancer Res. 19, 2995–3007 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trocoli, A. & Djavaheri-Mergny, M. The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am. J. Cancer. Res. 1, 629–649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goenka, S., Cho, S. & Boothby, M. Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J. Biol. Chem. 282, 18732–18739 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Cho, S. et al. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113, 2416–2425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cho, S. et al. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc. Natl Acad. Sci. USA 108, 15972–15977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  105. Roussos, E., Condeelis, J. & Patsialou, A. Chemotaxis in cancer. Nature Rev. Cancer 11, 573–587 (2011).

    Article  CAS  Google Scholar 

  106. Juszczynski, P. et al. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 26, 5348–5359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilkinson, P. & Islam, L. Recombinant IL-4 and IFN-γ activate locomotor capacity in human B lymphocytes. Immunology 67, 237–243 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Clinchy, B., Elenstrom, C. & Moller, G. The effect of T cell-derived cytokines on B cell motility in vitro. Cell. Immunol. 146, 62–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Zaidi, M. & Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Champelovier, P. et al. Is interferon γ one key of metastatic potential increase in human bladder carcinoma? Clin. Cancer Res. 9, 4562–4569 (2003).

    CAS  PubMed  Google Scholar 

  111. Lollini, P. et al. Inhibition of tumor growth and enhancement of metastasis after transfection of the γ-interferon gene. Int. J. Cancer 55, 320–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Bernabei, P. et al. Interferon-gamma receptor 2 expression as the deciding factor in human T, B, and myeloid cell proliferation or death. J. Leukocyte Biol. 70, 950–960 (2001).

    CAS  PubMed  Google Scholar 

  113. Aguiar, R., Takeyama, K., He, C., Kreinbrink, K. & Shipp, M. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280, 33756–33765 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Kuo, J.-C., Han, X., Hsiao, C.-T., Yates, J. & Waterman, C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nature Cell Biol. 13, 383–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Reticker-Flynn, N. et al. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nature Commun. 3, 1122 (2012).

    Article  CAS  Google Scholar 

  116. Akiyama, S., Olden, K. & Yamada, K. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev. 14, 173–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Penning, T. et al. Optimization of phenyl-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase inhibitors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a highly potent and efficacious inhibitor. J. Med. Chem. 53, 3142–3153 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Alice, N. W. & Eddy, S. Y. Beyond, DNA repair: additional functions of PARP-1 in cancer. Front. Oncol. 3, 290 (2013).

    Google Scholar 

  119. Petesch, S. & Lis, J. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol. Cell 45, 64–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Amé, J. et al. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868 (1999).

    Article  PubMed  Google Scholar 

  121. Loseva, O. et al. PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. J. Biol. Chem. 285, 8054–8060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boehler, C. et al. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl Acad. Sci. USA 108, 2783–2788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, S.-M. A. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Cho-Park, P. & Steller, H. Proteasome regulation by ADP-ribosylation. Cell 153, 614–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chang, P., Coughlin, M. & Mitchison, T. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biol. 7, 1133–1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Cook, B., Dynek, J., Chang, W., Shostak, G. & Smith, S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22, 332–342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank F. Solomon, M. Vander Heiden, J. Pascal and F. Bock for their helpful comments and discussion about the manuscript. This work is supported by a grant to P.C. from the US National Institutes of Health (ROI GM087465) and was partially supported by Cancer Center Support (core; grant P30-CA14051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, S., Chang, P. New PARP targets for cancer therapy. Nat Rev Cancer 14, 502–509 (2014). https://doi.org/10.1038/nrc3748

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3748

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer