Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The molecular programme of tumour reversion: the steps beyond malignant transformation

Abstract

How cells become malignant has preoccupied scientists for over a century. However, the converse question is also valid: are tumour cells capable of reverting from their malignant state? Askanazy's studies in 1907 indicated that teratoma cells could differentiate into normal somatic tissues and current evidence indicates that some tumour cells have acquired the molecular circuitry that results in the negation of chromosomal instability, translocations, oncogene activation and loss of tumour suppressor genes. Studying these extremely rare events of tumour reversion and deciphering these pathways, which involve SIAH1, presenilin 1, TSAP6 and translationally controlled tumour protein (TCTP), could lead to new avenues in cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical models of tumour reversion.
Figure 2: Biological models of tumour reversion.
Figure 3: Molecular pathways of tumour reversion.
Figure 4: Translationally controlled tumour protein (TCTP) is a multifunctional protein.

Similar content being viewed by others

References

  1. Weinberg, R. A. in The Biology of Cancer (Garland Science, 2007).

    Google Scholar 

  2. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Askanazy, M. Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl. Deutsch. Pathol. 11, 39–82 (1907).

    Google Scholar 

  4. Braun, A. C. Recovery of tumor cells from effects of the tumor-inducing principle in crown gall. Science 113, 651–653 (1951).

    Article  CAS  PubMed  Google Scholar 

  5. Braun, A. C. A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc. Natl Acad. Sci. USA 45, 932–938 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Braun, A. C. The reversal of tumor growth. Sci. Am. 213, 75–83 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. Pierce, G. B. & Dixon, F. J. Jr. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12, 573–583 (1959).

    Article  CAS  PubMed  Google Scholar 

  8. Kleinsmith, L. J. & Pierce, G. B. Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  9. Seilern-Aspang, F. & Kratochwil, K. Induction and differentiation of an epithelial tumour in the newt (Triturus cristatus). J. Embryol. Exp. Morphol. 10, 337–356 (1962).

    CAS  PubMed  Google Scholar 

  10. Macpherson, I. Reversion in hamster cells transformed by Rous sarcoma virus. Science 148, 1731–1733 (1965).

    Article  CAS  PubMed  Google Scholar 

  11. Ian McPherson . In Recent Results in Cancer Research Vol. 6 (ed. Kirsten, W. H.) 1–8 (Springer, Heidelberg, 1966).

    Google Scholar 

  12. Fischinger, P. J., Nomura, S., Peebles, P. T., Haapala, D. K. & Bassin, R. H. Reversion of murine sarcoma virus transformed mouse cells: variants without a rescuable sarcoma virus. Science 176, 1033–1035 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Wyke, J. A., Beamand, J. A. & Varmus, H. E. Factors affecting phenotypic reversion of rat cells transformed by avian sarcoma virus. Cold Spring Harb. Symp. Quant. Biol. 44 (Pt 2), 1065–1075 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Ewald, D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384–1386 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reversibility of acute B-cell leukaemia induced by BCRABL1. Nature Genet. 24, 57–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  17. de The, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558–561 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Degos, L. et al. Treatment of first relapse in acute promyelocytic leukaemia with all-trans retinoic acid. Lancet 336, 1440–1441 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Warrell, R. P. Jr, de The, H., Wang, Z. Y. & Degos, L. Acute promyelocytic leukemia. N. Engl. J. Med. 329, 177–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de The, H. How acute promyelocytic leukaemia revived arsenic. Nature Rev. Cancer 2, 705–713 (2002).

    Article  CAS  Google Scholar 

  21. Pollack, R. E., Green, H. & Todaro, G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc. Natl Acad. Sci. USA 60, 126–133 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabinowitz, Z. & Sachs, L. Reversion of properties in cells transformed by polyoma virus. Nature 220, 1203–1206 (1968).

    Article  CAS  PubMed  Google Scholar 

  23. Sachs, L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature 274, 535–539 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Lotem, J. & Sachs, L. Epigenetics wins over genetics: induction of differentiation in tumor cells. Semin. Cancer Biol. 12, 339–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Noda, M. et al. Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc. Natl Acad. Sci. USA 86, 162–166 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. A ras-related gene with transformation suppressor activity. Cell 56, 77–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Bos, J. L. Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 17, 123–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140, 1049–1056 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pierce, G. B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am. J. Pathol. 113, 117–124 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hendrix, M. J. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nature Rev. Cancer 7, 246–255 (2007).

    Article  CAS  Google Scholar 

  34. Telerman, A. et al. A model for tumor suppression using H-1 parvovirus. Proc. Natl Acad. Sci. USA 90, 8702–8706 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toolan, H. W. Lack of oncogenic effect of the H-viruses for hamsters. Nature 214, 1036 (1967).

    Article  CAS  PubMed  Google Scholar 

  36. Mousset, S. & Rommelaere, J. Minute virus of mice inhibits cell transformation by simian virus 40. Nature 300, 537–539 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Nemani, M. et al. Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc. Natl Acad. Sci. USA 93, 9039–9042 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tuynder, M. et al. Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl Acad. Sci. USA 99, 14976–14981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tuynder, M. et al. Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl Acad. Sci. USA 101, 15364–15369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amson, R. B. et al. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc. Natl Acad. Sci. USA 93, 3953–3957 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roperch, J. P. et al. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21Waf1. Proc. Natl Acad. Sci. USA 96, 8070–8073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang, P. & Pardee, A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Brenner, S. et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc. Natl Acad. Sci. USA 97, 1665–1670 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

  45. Israeli, D. et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16, 4384–4392 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Passer, B. J. et al. The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase. Proc. Natl Acad. Sci. USA 100, 2284–2289 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roperch, J. P. et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nature Med. 4, 835–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Michieli, P. et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 54, 3391–3395 (1994).

    CAS  PubMed  Google Scholar 

  52. Macleod, K. F. et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935–944 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Parker, S. B. et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267, 1024–1027 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Halevy, O. et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018–1021 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Gartel, A. L. et al. Activation and repression of p21WAF1/CIP1 transcription by RB binding proteins. Oncogene 17, 3463–3469 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Hiyama, H., Iavarone, A., LaBaer, J. & Reeves, S. A. Regulated ectopic expression of cyclin D1 induces transcriptional activation of the cdk inhibitor p21 gene without altering cell cycle progression. Oncogene 14, 2533–2542 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hiyama, H., Iavarone, A. & Reeves, S. A. Regulation of the cdk inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F. Oncogene 16, 1513–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, C., Kavurma, M. M., Lai, A. & Khachigian, L. M. Ets-1 protects vascular smooth muscle cells from undergoing apoptosis by activating p21WAF1/Cip1. J. Biol. Chem. 278, 27903–27909 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Hendricks, K. B., Shanahan, F. & Lees, E. Role for BRG1 in cell cycle control and tumor suppression. Mol. Cell. Biol. 24, 362–376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19, 1485–1495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linares-Cruz, G. et al. p21WAF-1 reorganizes the nucleus in tumor suppression. Proc. Natl Acad. Sci. USA 95, 1131–1135 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carthew, R. W. & Rubin, G. M. seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63, 561–577 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Hu, G. et al. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev. 11, 2701–2714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang, A. H., Neufeld, T. P., Kwan, E. & Rubin, G. M. PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Li, S., Li, Y., Carthew, R. W. & Lai, Z. C. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90, 469–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Fiucci, G. et al. Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc. Natl Acad. Sci. USA 101, 3510–3515 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. House, C. M. et al. A binding motif for Siah ubiquitin ligase. Proc. Natl Acad. Sci. USA 100, 3101–3106 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Winter, M. et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nature Cell Biol. 10, 812–824 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Nakayama, K. et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117, 941–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Matsuzawa, S. I. & Reed, J. C. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, J. et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7, 927–936 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Susini, L. et al. Siah-1 binds and regulates the function of Numb. Proc. Natl Acad. Sci. USA 98, 15067–15072 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Schweisguth, F. Regulation of notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Gonczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Rev. Mol. Cell. Biol. 9, 355–366 (2008).

    Article  CAS  Google Scholar 

  80. Petersen, P. H., Zou, K., Krauss, S. & Zhong, W. Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nature Neurosci. 7, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  PubMed  Google Scholar 

  83. McGill, M. A. & McGlade, C. J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Salcini, A. E. et al. Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nature Rev. Cancer 3, 756–767 (2003).

    Article  CAS  Google Scholar 

  90. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, C. J. et al. Inactivating mutations of the Siah-1 gene in gastric cancer. Oncogene 23, 8591–8596 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kaidi, A., Williams, A. C. & Paraskeva, C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biol. 9, 210–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Selkoe, D. J. & Wolfe, M. S. Presenilin: running with scissors in the membrane. Cell 131, 215–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Wolfe, M. S. The γ-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45, 7931–7939 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Feng, R. et al. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer's presenilin-1 and presenilin-2. Proc. Natl Acad. Sci. USA 101, 8162–8167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weihl, C. C. et al. Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J. Neurosci. 19, 5360–5369 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baki, L. et al. Wild-type but not FAD mutant presenilin-1 prevents neuronal degeneration by promoting phosphatidylinositol 3-kinase neuroprotective signaling. J. Neurosci. 28, 483–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, Q., Christakos, S., Robinson, N. & Mattson, M. P. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl Acad. Sci. USA 95, 3227–3232 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Z. et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Alves da Costa, C. et al. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc. Natl Acad. Sci. USA 99, 4043–4048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Amson, R. et al. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc. Natl Acad. Sci. USA 97, 5346–5350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nature Genet. 37, 1264–1269 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Amzallag, N. et al. TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104–46112 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Nickel, W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109–2119 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  Google Scholar 

  111. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Gould, S. J., Booth, A. M. & Hildreth, J. E. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA 100, 10592–10597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Lespagnol, A. et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Thomas, G., Thomas, G. & Luther, H. Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 78, 5712–5716 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yenofsky, R., Bergmann, I. & Brawerman, G. Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc. Natl Acad. Sci. USA 79, 5876–5880 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. MacDonald, S. M., Rafnar, T., Langdon, J. & Lichtenstein, L. M. Molecular identification of an IgE-dependent histamine-releasing factor. Science 269, 688–690 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Bommer, U. A. et al. Translational regulation of the mammalian growth-related protein P23: involvement of eIF-4E. Cell. Mol. Biol. Res. 40, 633–641 (1994).

    CAS  PubMed  Google Scholar 

  119. Norbeck, J. & Blomberg, A. Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3–10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI > 7) proteins. Yeast 13, 1519–1534 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Li, F., Zhang, D. & Fujise, K. Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542–47549 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. & Yang-Yen, H. F. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol. 25, 3117–3126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, Y. et al. An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24, 4778–4788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Susini, L. et al. TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ. 15, 1211–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. van de Sande, W. W. et al. Translationally controlled tumor protein from Madurella mycetomatis, a marker for tumorous mycetoma progression. J. Immunol. 177, 1997–2005 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Kang, H. S. et al. Molecular identification of IgE-dependent histamine-releasing factor as a B cell growth factor. J. Immunol. 166, 6545–6554 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, M., Pritchard, M. R., Middleton, F. A., Horton, J. A. & Damron, T. A. Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways. Bone 43, 511–520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, S. H., Cairns, N., Fountoulakisc, M. & Lubec, G. Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease. Neurosci. Lett. 300, 41–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Gachet, Y. et al. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell Sci. 112 (Pt 8), 1257–1271 (1999).

    CAS  PubMed  Google Scholar 

  129. Burgess, A. et al. Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 26 May 2008 (doi:10.1038/onc.2008.167).

  130. Cans, C. et al. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl Acad. Sci. USA 100, 13892–13897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, Z. et al. The expression of AmphiTCTP, a TCTP orthologous gene in amphioxus related to the development of notochord and somites. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 147, 460–465 (2007).

    Article  PubMed  CAS  Google Scholar 

  132. Kubiak, J. Z. et al. Temporal regulation of embryonic M-phases. Folia Histochem. Cytobiol. 46, 5–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Koziol, M. J., Garrett, N. & Gurdon, J. B. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 17, 801–807 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tani, T., Shimada, H., Kato, Y. & Tsunoda, Y. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9, 267–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Hsu, Y. C., Chern, J. J., Cai, Y., Liu, M. & Choi, K. W. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445, 785–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, S. H. et al. A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol. Biol. Cell 18, 2525–2532 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fiucci, G. et al. Genomic organization and expression of mouse Tpt1 gene. Genomics 81, 570–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Curry, C. L. et al. Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene 24, 6333–6344 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. O'Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Qin, J. Z. et al. p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol. Cancer Ther. 3, 895–902 (2004).

    CAS  PubMed  Google Scholar 

  144. Efferth, T. et al. Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs. Arzneimittelforschung 46, 196–200 (1996).

    CAS  PubMed  Google Scholar 

  145. Beekman, A. C. et al. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod. 60, 325–330 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Bhisutthibhan, J. et al. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J. Biol. Chem. 273, 16192–16198 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Oliver, C. P. A Reversion to wild-type associated with crossing-over in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 26, 452–454 (1940).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Noda, M. Mechanisms of reversion. FASEB J. 7, 834–840 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Nagano, Y. et al. Siah-1 facilitates ubiquitination and degradation of synphilin-1. J. Biol. Chem. 278, 51504–51514 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Liani, E. et al. Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 5500–5505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the students, postdoctoral researchers and scientists who have worked in our laboratory and, especially for their contribution, M. Tuynder, L. Susini, G. Fiucci, A. Lespagnol, D. Duflaut, S. Prieur, S. Besse, F. Lethrosne and M. Nemani; our colleagues M. Lassalle, M. Vidal, J.-C. Marine, J.-C. Martinou, J. Cavarelli, F. Checler, B. Goud, F. Dautry, L. Degos, F. Calvo, F. Sigaux, J. Hoebeke, P. Hainaut, J.-F. Mouscadet, A. Bentley and C. Auclair; and our mentors M. Oren, J. Schlessinger, J. Dausset, G. Charpak, G. Schnek, M. Van Montagu, D. Cohen, D. Moras, A. Levine, R. Weinberg, F. McCormick, P. Chambon and S. Brenner. A.T. and R.A. are supported by Conticanet, Network of excellence of the European Union.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

FUdR

promethazine

sertraline

FURTHER INFORMATION

Conticanet

Tumour reversion

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telerman, A., Amson, R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9, 206–216 (2009). https://doi.org/10.1038/nrc2589

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing