Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system

Key Points

  • Reactive oxygen species (ROS) produced at the mitochondrial respiratory chain and to a lesser extent by peroxisomes and plasma membrane-bound NADPH oxidases have a crucial role in signalling pathways in the cell, including a requirement for ROS to promote S phase entry.

  • Excess ROS can lead to cell cycle arrest, senescence or cell death and thus proper management of ROS is required to prevent premature ageing and disease.

  • Increased ROS levels in the haematopoietic system lead to stem cell depletion and bone marrow failure and are associated with activation of the retinoblastoma (RB) pathway through induction of the cyclin-dependent kinase inhibitor INK4A.

  • RB is required to maintain the haematopoietic stem cell (HSC) pool and prevent aberrant S phase entry of HSCs in response to proliferative stress.

  • Defects in Rb1-deficient haematopoiesis are due in part to non-cell-autonomous events, including the influence of the bone marrow niche on the development of myeloproliferative disease and the sensitivity of stem cells and erythroid cells to proliferative stress. These observations are indicative of a role for RB in regulating the stromal microenvironment.

  • Disruption of ataxia telangiectasia mutated (ATM) or the Forkhead box O (Foxo) transcription factors in mice leads to increased ROS levels in HSCs that induce p38 mitogen-activated protein kinase activity, INK4A expression, downregulation of N-cadherin and increased stem cell recruitment into the cell cycle, probably due to reduced expression of the cyclin-dependent kinase inhibitors p21 and p27. Thus, ATM and Foxo act upstream of RB in the response of the cell to ROS.

  • Proliferative stress also induces erythroid maturation defects in the Rb1-null mouse that include failure to exit the cell cycle during terminal differentiation, increased ROS levels, increased DNA damage and altered management of mitochondrial mass.

  • Acetylation of RB modulates its rate of turnover in response to oxidative stress and protein phosphatase 2A-dependent dephosphorylation modulates its activity.

  • The role of the RB pathway in responding to oxidative stress in the haematopoietic system has implications for how other cell types respond to ROS, including human tumours that lack a functional RB pathway. Such cancers exhibit defective stress responses and increased levels of ROS, making them more susceptible to chemotherapy-induced death.

Abstract

Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The retinoblastoma (RB) pathway in stress responses and cancer.
Figure 2: Oxidative stress responses link the retinoblastoma (RB) pathway and Forkhead box O (Foxo) transcription factors.
Figure 3: Functional interactions of E2f transcription factors with other transcription factors in oxidative stress responses.

Similar content being viewed by others

References

  1. Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes and apoptosis. Proc. Natl Acad. Sci. USA 92, 5436–5440 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrington, E. A., Bruce, J. L., Harlow, E. & Dyson, N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc. Natl Acad. Sci. USA 95, 11945–11950 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Knudsen, K. E. et al. RB-dependent S-phase response to DNA damage. Mol. Cell. Biol. 20, 7751–7763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in Cancer and Aging. Cell 127, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Knudsen, E. S. & Knudsen, K. E. Tailoring to RB: tumour suppressor status and therapeutic response. Nature Rev. Cancer 8, 714–724 (2008).

    Article  CAS  Google Scholar 

  7. Cam, H. & Dynlacht, B. D. Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3, 311–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Q., Ciermeych, M. A. & Sicinski, P. Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene 24, 7114–7119 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Trimarchi, J. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  11. El-Deiry, W. S. et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169–1174 (1994).

    CAS  PubMed  Google Scholar 

  12. Cicchillitti, L., Fasanaro, P., Biglioli, P., Capogrossi, M. C. & Martelli, F. Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107 and p130. J. Biol. Chem. 278, 19509–19517 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Havens, C. G., Ho, H., Yoshioka, N. & Dowdy, S. F. Regulation of late G1/S phase transition and APCCdh1 by reactive oxygen. Mol. Cell. Biol. 26, 4701–4711 (2006). Quenching ROS induced a G1 arrest suggesting that endogenous ROS were required for S phase entry. Cell cycle arrest was associated with failure to stabilize cyclin A1, SKP2 or EMI1 and persistent activity of the APC–CDH1 ubiquitin ligase complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of aging. Nature 408, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants and aging. Cell 120, 483–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Cancer 4, 181–189 (2004).

    CAS  Google Scholar 

  20. Conour, J. E., Graham, W. V. & Gaskins, H. R. A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol. Genomics 18, 196–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Menon, S. G. et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res. 63, 2109–2117 (2003).

    CAS  PubMed  Google Scholar 

  22. Menon, S. G. & Goswami, P. C. A redox cycle within the cell cycle: ring in the old with the new. Oncogene, 24 1–9 (2006).

    Google Scholar 

  23. Stubbe, J. & Riggs-Gelasco, P. Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends Biochem. Sci. 23, 438–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Miller, J. J. et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20, 2410–2420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4A. Nature 443, 421–426 (2006). Showed that INK4A levels increased with age in HSCs and such cells also showed reduced self-renewal and were less effective in homing to and repopulating host bone marrow. Targeted deletion of INK4A in mice improved the transplant potential of ageing stem cells and restored tolerance of cytotoxic agents.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-type cyclins. Cell 118, 477–491 (2003).

    Article  Google Scholar 

  28. Spike, B. T. et al. The Rb tumor suppressor is required for stress erythropoiesis. EMBO J. 23, 4319–4329 (2004). Shows that red cell maturation defects can be induced by acute deletion of Rb1 and haemolytic anaemia in vivo. Rb1 -null haematopoietic tissue is also defective for long-term repopulation resulting in myeloproliferation and bone marrow failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daria, D. et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood 111, 1894–1902 (2008). This paper shows that Rb1 -deleted adult HSCs have reduced repopulating potential and increased activity in peripheral tissues. Following challenge with 5-fluorouracil, HSCs from these animals are more often in S phase of cell cycle and there is increased extramedullary haematopoiesis in the spleen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007). The authors showed that myeloproliferative disease in Rb1flox/flox; Mx1 Cre mice resulted from a failure in synergistic interactions between myeloid cells and the BM niche and was independent of the HSC defect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spike, B. T. & Macleod, K. F. The Rb tumor suppressor in stress responses and hematopoietic homeostasis. Cell Cycle 4, e181–e184 (2005).

    Article  Google Scholar 

  32. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Fleming, W. H. et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J. Cell Biol. 122, 897–902 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Krishnamurthy, J. et al. p16INK4A induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Molofsky, A. V. et al. Increasing p16INK4A expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, I. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, B. O. et al. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13, 4251–4259 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Robanus-Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  Google Scholar 

  40. Whyatt, D. & Grosveld, F. Cell-autonomous function of the retinoblastoma tumor suppressor protein: new interpretations of old phenotypes. EMBO Rep. 3, 130–135 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walkley, C. R. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc. Natl Acad. Sci. USA 103, 9057–9062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330–338 (2003).

    Article  CAS  Google Scholar 

  43. Hosokawa, K. et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem. Biophys. Res. Comm. 363, 578–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell (in the press).

  45. Lecouter, J. E. et al. Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol. Cell. Biol. 18, 7455–7465 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, G. B. & Scadden, D. T. The hematopoietic stem cell in its place. Nature Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  47. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, D. M. et al. Retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell 8, 303–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, H. & Tindall, D. J. Dynamic FoxO transcription factors. J. Cell Sci. 120, 2479–2487 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Miyamoto, K. et al. FoxO3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007). Knockout of Foxo3a in mice revealed a requirement for FOXO3A in HSCs, but not in myeloid progenitors. Foxo3a−/− HSCs were defective for colony formation in vitro and for repopulating capacity in vivo , had increased ROS levels and had reduced expression of SOD2 and catalase.

    Article  CAS  PubMed  Google Scholar 

  51. Tothova, Z. et al. FoxOs are critical mediators of hematological resistance to physiologic oxidative stress. Cell 128, 325–339 (2007). Increased ROS in Foxo-deleted HSCs, but not in myeloid progenitors, led the authors to show that INK4A induction, defective HSC repopulation and cell cycle control could be rescued by treatment of mice with NAC.

    Article  CAS  PubMed  Google Scholar 

  52. Marinkovic, D. et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Invest. 117, 2133–2144 (2007). This work shows that loss of FOXO3A sensitizes mice to haemolytic anaemia induced by phenylhydrazine treatment. Loss of FOXO3A causes red blood cells to accumulate increased levels of ROS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of hematopoietic stem cells. Nature 431, 997–1002 (2004). Loss of ATM in the haematopoietic system results in reduced bone marrow cellularity, loss of stem cell self-renewal, increased INK4A expression and increased ROS.

    Article  CAS  PubMed  Google Scholar 

  54. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic cells. Nature Med. 12, 446–451 (2006). Atm−/− HSCs showed increased p38 activity and inhibition of p38 with NAC, or with chemical inhibitors of p38 prevented induction of INK4A and restored HSC self-renewal.

    Article  CAS  PubMed  Google Scholar 

  55. Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuzawa, A. & Ichijo, H. Redox control of cell fate by MAP kinase: physiological roles of ASK1–MAP kinase pathway in stress signaling. Biochim. Biophys. Acta 1780, 1325–1336 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Ohtani, N. et al. Opposing effects of Ets and Id proteins on p16INK4A expression during cellular senescence. Nature 409, 1067–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Tsai, W. B., Chung, Y. L., Takahashi, Y., Xu, Z. & Hu, M. C. T. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nature Cell Biol. 10, 460–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell 118, 9–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Polager, S., Kalma, Y., Berkovich, E. & Ginsberg, D. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21, 437–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoskins, E. E. et al. Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene 28 Apr 2008 (doi: 10.1038/onc.2008.121).

  64. D'Andrea, A. D. & Grompe, M. The Fanconi Anemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  65. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Venkitaraman, A. R. Tracing the network connecting BRCA and Fanconi anaemia proteins. Nature Rev. Cancer 4, 266–276 (2004).

    Article  CAS  Google Scholar 

  67. Resnick, I. B. et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J. Pediatr. 140, 355–361 (2002).

    Article  PubMed  Google Scholar 

  68. Takeuchi, T. & Morimoto, K. Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. Carcinogenesis 14, 1115–1120 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Clarke, A. A., Philpott, N. J., Gordon-Smith, E. C. & Rutherford, T. R. The sensitivity of Fanconi anaemia group C cells to apoptosis induced by mitomycin C is due to oxygen radical generation, not DNA cross-linking. Br. J. Haematol. 96, 240–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Park, S. J. et al. Oxidative stress/damage induces multimerization and interaction of Fanconi Anemia proteins. J. Biol. Chem. 279, 30053–30059 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Schindler, D. & Hoehn, H. Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am. J. Hum. Genet. 43, 429–435 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bouchard, V. J., Rouleau, M. & Poirier, G. G. PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol. 31, 446–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Barzilai, A., Rotman, G. & Shiloh, Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair 1, 3–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Tsantes, A. E., Bonovas, S., Travlou, A. & Sitaras, N. Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid. Redox Signal. 8, 1205–1216 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Neumann, C. A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour supression. Nature 424, 561–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, T. H. et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101, 5033–5038 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Chan, J. Y., Kwong, M., Lo, M., Emerson, R. & Kuypers, F. A. Reduced oxidative stress response in red blood cells from p45NFE2-deficient mice. Blood 97, 2151–2158 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Lan, Q. et al. Hematotoxicity in workers exposed to low levels of benzene. Science 306, 1774–1776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rothman, N. et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C→T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res. 57, 2839–2842 (1997).

    CAS  PubMed  Google Scholar 

  80. Hattangadi, S. M. & Lodish, H. F. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J. Clin. Invest. 117, 2075–2077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark, A. J., Doyle, K. M. & Humbert, P. O. Cell intrinsic functions of pRb in erythropoiesis. Blood 104, 1324–1326 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kinross, K. M., Clark, A. J., Iazzolino, R. M. & Humbert, P. O. E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 108, 886–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Dirlam, A., Spike, B. T. & Macleod, K. F. De-regulated E2f-2 activity underlies cell cycle and maturation defects in Rb null erythroblasts. Mol. Cell. Biol. 27, 8713–8728 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cam, H. et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16, 399–411 (2004). This work identifies overlapping sets of target genes regulated by E2F4 and NRF1.

    Article  CAS  PubMed  Google Scholar 

  85. Kelly, D. P. & Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Tracy, K. et al. BNIP3 is a RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol. 27, 6229–6242 (2007). The authors identify BNIP3 as a direct transcriptional target of RB–E2f and show a functional interaction with HIF at the BNIP3 promoter. Loss of RB increases BNIP3 expression and induces cell death associated with defective autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bindra, R. S. et al. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 65, 11597–11604 (2006).

    Article  CAS  Google Scholar 

  88. Schlisio, S., Halperin, T., Vidal, M. & Nevins, J. R. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J. 21, 5775–5786 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giangrande, P. H., Hallstrom, T. C., Tunyaplin, C., Calame, K. & Nevins, J. R. Identification of E-box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol. Cell Biol. 23, 3707–3720 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Giangrande, P. H., Zhu, W., Rempel, R. E., Laasko, N. & Nevins, J. R. Combinatorial gene control involving E2F and E box family members. EMBO J. 23, 1336–1347 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sankaran, V. G., Orkin, S. H. & Walkley, C. R. Rb instrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 22, 463–475 (2008). The authors show that Rb1 -null erythroblasts have uncoupled mitochondrial mass regulation from other aspects of terminal maturation, such as cell cycle exit and expression of key maturation markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sandoval, H. et al. Essential role for Nix in autophagic maturation of red cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, C. et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Natl Acad. Sci. USA 103, 11567–11572 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of c-Myc activity. Cancer Cell 11, 407–420 (2007). The authors present data proposing that one method of coping with hypoxia is to reduce mitochondrial mass by inhibiting mitochondrial biogenesis.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, H. et al. Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008). The authors present data suggesting that BNIP3 promotes mitophagy by titrating the inhibitory activity of BCL2 away from the crucial autophagy regulator beclin 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tracy, K. & Macleod, K. F. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 3, 616–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hamacher-Brady, A. et al. Response to myocardial ischemia/reperfusion injury involves BNip3 and autophagy. Cell Death Diff. 13, 1–12 (2006).

    Article  Google Scholar 

  99. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabolism 6, 458–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Polager, S., Ofir, M. & Ginsberg, D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27, 4860–4864 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Altiok, S., Xu, M. & Spiegelman, B. M. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 11, 1987–1998 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Scime, A. et al. Rb and p107 regulate pre-adipocyte differentiation into white versus brown fat through repression of PGC-1a. Cell Metab. 2, 283–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Esposito, F., Russo, L., Russo, T. & Cimino, F. Retinoblastoma protein dephosphorylation is an early event of cellular response to pro-oxidant conditions. FEBS Lett. 470, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Magenta, A. F., P., Romani, S., Di Stefano, V., Capogrossi, M. C. & Martelli, F. PP2A–PR70 interacts with pRb and mediates its de-phosphorylation. Mol. Cell. Biol. 28, 873–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Yamauchi, A. & Bloom, E. T. Control of cell cycle progression in human natural killer cells through redox regulation of expression and phosphorylation of retinoblastoma gene product protein. Blood 89, 4092–4099 (1997).

    CAS  PubMed  Google Scholar 

  107. Guardavaccaro, D. & Pagano, M. Stabilizers and destabilizers controlling cell cycle oscillators. Mol. Cell 22, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Tedesco, D., Lukas, J. & Reed, S. I. The pRb-related protein p130 is regulated by phosphorylatiton-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Genes Dev. 16, 2946–2957 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ji, P. et al. An Rb–Skp2–p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol. Cell 16, 47–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Binne, U. K. et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nature Cell Biol. 9, 225–232 (2006).

    Article  PubMed  CAS  Google Scholar 

  111. Wu, C., Miloslavskaya, I., Demontis, S., Maestro, R. & Galaktionov, K. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 432, 640–645 (2005).

    Article  CAS  Google Scholar 

  112. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. Acetylation control of the retinoblastoma tumour suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen, D. X., Baglia, L. A., Huang, S. M., Baker, C. M. & McCance, D. J. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J. 23, 1609–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wong, S. & Weber, S. Deacteylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem. J. 407, 451–460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luo, J. et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Fulco, M. et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Puri, P. L. et al. Class 1 histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol. Cell 8, 885–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Di Carlo, A. et al. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J. Biol. Chem. 279, 16332–16338 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Bakker, W. J., Harris, I. S. & Mak, T. W. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol. Cell 28, 941–953 (2007). CITED2 is an inhibitor of p300–CBP and feeds back to inhibit p300-dependent transactivation by HIF. Induction of CITED2 by hypoxia and by FOXO3A is HIF-dependent. Knockdown of FOXO3 sensitized tumour cells to hypoxia-induced cell death.

    Article  CAS  PubMed  Google Scholar 

  123. Parmar, K., Mauch, P., Vergillo, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Danet, G. H., Pan, Y., Luongo, J. L., Bonnet, D. A. & Simon, M. C. Expansion of human SCID-repopulating cells under hypoxic conditions. J. Clin. Invest. 112, 126–135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gustaffson, M. V. et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  Google Scholar 

  126. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Di Mocco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  Google Scholar 

  128. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Dolado, I. et al. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11, 191–205 (2007). Upregulation of glutathione S -transferase m2 ( Gstm2 ) in HRAS-transformed cells is p38α-dependent. Overexpression of Gstm2 limited p38α activation and desensitized cells to ROS-induced apoptosis.

    Article  CAS  PubMed  Google Scholar 

  131. Gauthier, M. L. et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007). Shows that overexpression of COX2 induced INK4A expression and growth arrest. This arrest is RB-dependent and, conversely, COX2 expression is induced by inactivation of RB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Rev. Cancer 8, 671–682 (2008).

    Article  CAS  Google Scholar 

  133. Kim, H. et al. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280, 21237–21245 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Gauthier, M. L. et al. p38 regulates cyclooxygenase-2 in human mammary epithelial cells and is activated in pre-malignant tissue. Cancer Res. 65, 1792–1799 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Zha, S., Yegnasubramanian, V., Nelson, W. G., Isaacs, W. B. & De Marzo, A. Cyclo-oxygenases in cancer: progress and perspective. Cancer Lett. 215, 1–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Schumacker, P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocynate. Cancer Cell 10, 241–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Wikemheiser-Brokamp, K. A. Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell. Mol. Life Sci. 63, 767–780 (2006).

    Article  CAS  Google Scholar 

  140. Bremner, R. et al. Direct transcriptional repression by Rb and its reversal by specific cyclins. Mol. Cell. Biol. 15, 3256–3265 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weintraub, S. J. et al. Mechanisms of active transcriptional repression by Rb. Nature 375, 812–815 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Brehm, A. & Kouzarides, T. Retinoblastoma protein meets chromatin. Trends Biochem. Sci. 24, 142–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Mittnacht, S. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8, 21–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  147. Chau, B. N. & Wang, J. Y. J. Coordinated regulation of life and death by RB. Nature Rev. Cancer 3, 130–138 (2003).

    Article  CAS  Google Scholar 

  148. Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at Complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91, 807–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumor suppression: the senesence connection. Nature Rev. Cancer 8, 450–458 (2008).

    Article  CAS  Google Scholar 

  150. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Wenzel, P. L. et al. Rb is critical in a mammalian tissue stem cell population. Genes Dev. 21, 85–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lipinski, M., Macleod, K. F., Crowley, D., Mullaney, T. & Jacks, T. Cell-autonomous and non-cell autonomous developmental functions of the retinoblastoma tumor suppressor gene in vivo. EMBO J. 20, 3402–3413 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Spike, B. T. & Macleod, K. F. Effects of hypoxia on heterotypic macrophage interactions. Cell Cycle 6, 2620–2624 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Spike, B. T., Dibling, B. C. & Macleod, K. F. Hypoxic stress underlies defects in erythroblast island formation in the Rb null mouse. Blood 110, 2173–2181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Iavarone, A. et al. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 432, 1040–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Krug, U., Ganser, A. & Koeffler, H. P. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21, 3475–3495 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Dickson, C. et al. Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett. 90, 43–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Foster, C. S. et al. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23, 5871–5879 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Oeggerli, M. et al. E2F3 is the main target gene of the 6p22 amplicon with high specificity for human bladder cancer. Oncogene 25, 6538–6543 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Hallstrom, T., Mori, S. & Nevins, J. R. An E2F-1 dependent gene expression program that determines the balance betweeen proliferation and cell death. Cancer Cell 13, 11–22 (2008). Expression profiling was used to identify pro-apoptotic E2F1 target genes that are repressed by phosphoinositide 3-kinase and identified AMPKα2, CYO26B1, SOS2 and GRB7, amongst others.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hershko, T. & Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F-1 mediates apoptosis. J. Biol. Chem. 279, 8627–8634 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Brugarolas, J., Bronson, R. T. & Jacks, T. p21 is a critical Cdk2 regulator essential for proliferation control in Rb-deficient cells. J. Cell. Biol. 141, 503–514 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Smith, K. S. et al. Bmi-1 regulation of INK4A–ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a–Pbx1. Mol. Cell 12, 393–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Gilley, J., Coffer, P. J. & Ham, J. FoxO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell. Biol. 162, 613–622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kranc, K. R. et al. Transcriptional coactivator Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation via INk4a/ARF. Mol. Cell. Biol. 23, 7658–7666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hershko, T., Korotayev, K., Polager, S. & Ginsberg, D. E2F-1 modulates p38 MAPK phosphorylation via transcriptional regulation of Ask1 and Wip1. J. Biol. Chem. 281, 31309–31316 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Nowak, K., Killmer, K., Gessner, C. & Lutz, W. E2F-1 regulates expression of FOXO1 and FOXO3a. Biochim. Biophys. Acta 1769, 244–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Tanaka, H. et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9, 1017–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, J. et al. Generation of normal lymphocyte populations of Rb-deficient ES cells: analysis of gene function by RAG-2-deficient blastocyst complementation. Curr. Biol. 3, 405–413 (1993).

    Article  CAS  PubMed  Google Scholar 

  175. Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. de Bruin, A. et al. Rb function in extraembryonic tissue lineages suppresses apoptosis in the CNS of Rb-deficient mice. Proc. Natl Acad. Sci. USA 100, 6546–6551 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ye, M. et al. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multi-lineage repopulation potential. Immunity 19, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to the J. P. McCarthy Foundation, the Aplastic Anaemia and MDS International Foundation and the National Heart Lung & Blood Institute (RO1 HL080262) for funding of work in her laboratory relating to oxidative stress, erythropoiesis and haematopoietic diseases. The author also gratefully acknowledges the experimental skills and intellectual input to work in the laboratory in the related research area by current laboratory members K. Tracy, J. Knabb and D. Glick and by former graduate students in the laboratory B. T. Spike and A. Dirlam.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

prostate cancer

National Cancer Institute Drug Dictionary

5-fluorouracil

cisplatin

etoposide

mitomycin C

OMIM

ataxia telangiectasia

Nijmegen breakage syndrome

FURTHER INFORMATION

K. F. Macleod's homepage

Glossary

Haematopoietic stem cell

A cell residing at the apex of the cellular hierarchy in the haematopoietic system that gives rise to all other lineages and cell types in the blood system.

Non-cell-autonomous

Effects in tissues that are the consequence of a defect or altered phenotype in a different tissue or cell type.

Vav–Cre

Expression of the Cre recombinase under the control of the Vav promoter. which is restricted in its expression to haemangioblast-derived cell types. Thus Vav–Cre drives deletion of floxed alleles in embryonic and adult haematopoietic stem cells and their progeny, as well as in endothelial cells.

Poly(I)poly(C)

A form of double-stranded RNA that is a potent inducer of interferon and is used to activate the Mx1 promoter driving Cre recombinase expression.

Mx1–Cre

Expression of the Cre recombinase under the control of the silent Mx1 gene promoter: Cre is not expressed unless the transgenic mouse is challenged with agents that induce the interferon response, such as poly(I)poly(C). Expression is high in the haematopoietic system, liver and kidneys and lower in other cell types tested.

N-cadherin

A member of the cadherin family of cell–cell adhesion proteins bearing conserved structural motifs known as 'cadherin repeats'. N-cadherin is highly expressed in mature neurons.

Repopulating capacity

The ability of haematopoietic tissue and cells to regenerate the blood system when transplanted into host animals that have had their bone marrow ablated through exposure to lethal or sublethal doses of ionizing irradiation or to cytotoxic drugs.

Myeloproliferation

Expansion of myeloid elements within the blood system.

Osteoclasts

Myeloid-derived cells within the bone marrow niche that interact with bone matrix and osteoblasts to influence stem cell development.

Antioxidants

Compounds and enzymes that neutralize ROS by accepting electrons from free radicals.

Fanconi anaemia

A cancer susceptibility syndrome in which genetically predisposed individuals are sensitized to DNA crosslinking agents, experience bone marrow failure and anaemia and show varying degrees of developmental abnormalities.

Poly(ADP-ribose)

A polymer generated by and conjugated to target proteins by members of the poly(ADP)-ribose polymerase resulting in increased negative charge and altered activities of modified proteins.

Pentose phosphate pathway

A series of enzymatic reactions in which NADPH is produced in cells by conversion of glucose-6-phsophate to ribulose-5-phosphate.

Fenton reaction

The oxidation of Fe2+ to generate Fe3+ and highly reactive hydroxyl radicals.

Ischaemia

Deprivation or insufficiency of blood supply to tissues associated with hypoxia and nutrient deprivation, frequently with necrotic cell death.

Endosteal surface

The inner surface of bone bordering the bone marrow cavity.

Ki67

Ki67 is a marker of proliferation that may have a role in ribosome biogenesis. Immunohistochemical staining for Ki67 on tumour sections and tissues is commonly used to mark out proliferating cells in situ.

Cyclooxygenase 2

(COX2). An enzyme with both peroxidase and dioxygenase activity involved in synthesis of prostaglandins from arachadonic acid, COX2 is activated by inflammation and upregulated in colorectal, breast and other cancers. COX2 inhibitors are used as anti-inflammatory drugs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macleod, K. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat Rev Cancer 8, 769–781 (2008). https://doi.org/10.1038/nrc2504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing