Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Patch clamp recording from enteric neurons in situ

A Publisher Correction to this article was published on 22 October 2018

This article has been updated

Abstract

The study of enteric neurons is key to understanding intestinal motility and crucial to the design of therapeutic strategies for dealing with neurogenic disorders. However, enteric neurons have historically been inaccessible to patch-clamp recording. We report here the first technique that allows patch-clamp recording of neurons from the intact myenteric plexus of the mouse duodenum. The mucosa, submucosa and circular muscles are removed, exposing the myenteric plexus on the longitudinal muscle. Proteolytic treatment of exposed ganglia combined with gentle cell-surface cleaning allows gigaseal formation. Compared with previous studies using intracellular microelectrode recordings or cultured myenteric neurons, this technique provides an opportunity to explore properties of single or multiple ion channels in myenteric neurons in their native environment. The protocol—from the tissue preparation to patch-clamp recording—can be completed in 4 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equipment.
Figure 2: Schematic illustration of the perfusion system on the patch clamp setup.
Figure 3: Illustrated dissection procedure.
Figure 4: Visualization of myenteric neurons.
Figure 5: Whole-cell voltage clamp recording.
Figure 6: Whole-cell current clamp recording.

Similar content being viewed by others

Change history

  • 09 June 2011

    In the version of this article initially published, two important references were omitted in the discussion of the development of this method. In the fifth paragraph of the Introduction (at the top of page 16), the following sentence has been inserted before "This technique requires...": There were early demonstrations of patch clamping of myenteric neurons in the guinea pig51 and mouse52. The corresponding references are listed below: 51. Kunze, W. et al. The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differently to deformation. J. Physiol. 526, 375–385 (2000). 52. Mao, Y., Wang, B. & Kunze, W. Characterization of myenteric sensory neurons in the mouse small intestine. J. Neurophysiol. 96, 998–1010 (2006). This information has been added to the HTML and PDF versions of the article.

  • 22 October 2018

    In the HTML version of this article published online, the abstract contains a typo in the first sentence: "key to understanding intestinal motility anGutn of therapeutic strategies" should read "key to understanding intestinal motility and crucial to the design of therapeutic strategies." The PDF version of the article is correct.

References

  1. Furness, J.B., Kunze, W.A. & Clerc, N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: neural, endocrine, and immune responses. Am. J. Physiol. 277, G922–928 (1999).

    CAS  PubMed  Google Scholar 

  2. Furness, J.B. The Enteric Nervous System (Blackwell, Oxford, 2006).

  3. Wood, J.D. Enteric nervous system: sensory physiology, diarrhea and constipation. Curr. Opin. Gastroenterol. 26, 102–108 (2010).

    Article  PubMed  Google Scholar 

  4. Brookes, S. Retrograde tracing of enteric neuronal pathways. Neurogastroenterol. Motil. 13, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Furness, J.B. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol. Motil. 20 (Suppl 1): 32–38 (2008).

    Article  PubMed  Google Scholar 

  6. Wood, J.D. Enteric nervous system: reflexes, pattern generators and motility. Curr. Opin. Gastroenterol. 24, 149–158 (2008).

    Article  PubMed  Google Scholar 

  7. Nurgali, K. Plasticity and ambiguity of the electrophysiological phenotypes of enteric neurons. Neurogastroenterol. Motil. 21, 903–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rugiero, F. et al. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J. Physiol. 538, 447–463 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rugiero, F. et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J. Neurosci. 23, 2715–2725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirst, G.D., Holman, M.E. & Spence, I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J. Physiol. 236, 303–326 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishi, S. & North, R.A. Intracellular recording from the myenteric plexus of the guinea-pig ileum. J. Physiol. 231, 471–491 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furness, J.B., Kunze, W.A., Bertrand, P.P., Clerc, N. & Bornstein, J.C. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol. 54, 1–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kunze, W.A. & Furness, J.B. The enteric nervous system and regulation of intestinal motility. Annu. Rev. Physiol. 61, 117–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Galligan, J.J., LePard, K.J., Schneider, D.A. & Zhou, X. Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J. Auton. Nerv. Syst. 81, 97–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Morita, K., North, R.A. & Tokimasa, T. The calcium-activated potassium conductance in guinea-pig myenteric neurons. J. Physiol. 329, 341–354 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirst, G.D., Johnson, S.M. & van Helden, D.F. The slow calcium-dependent potassium current in a myenteric neuron of the guinea-pig ileum. J. Physiol. 361, 315–337 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. North, R.A. & Tokimasa, T. Persistent calcium-sensitive potassium current and the resting properties of guinea-pig myenteric neurons. J. Physiol. 386, 333–353 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogalis, F., Furness, J.B. & Kunze, W.A. After hyperpolarization current in myenteric neurons of the guinea pig duodenum. J. Neurophysiol. 85, 1941–1951 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bornstein, J.C., Costa, M., Furness, J.B. & Lees, G.M. Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine. J. Physiol. 351, 313–325 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunze, W.A., Furness, J.B., Bertrand, P.P. & Bornstein, J.C. Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J. Physiol. 506, 827–842 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neher, E., Sakmann, B. & Steinbach, J.H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 375, 219–228 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Franklin, J.L. & Willard, A.L. Voltage-dependent sodium and calcium currents of rat myenteric neurons in cell culture. J. Neurophysiol. 69, 1264–1275 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Starodub, A.M. & Wood, J.D. Selectivity of omega-CgTx-MVIIC toxin from Conus magus on calcium currents in enteric neurons. Life Sci. 64, PL305–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Zholos, A.V., Baidan, L.V., Starodub, A.M. & Wood, J.D. Potassium channels of myenteric neurons in guinea-pig small intestine. Neuroscience 89, 603–618 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, X. & Galligan, J.J. Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J. Physiol. 513, 685–697 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haschke, G., Schafer, H. & Diener, M. Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+ concentration in cultured rat myenteric neurones. Neurogastroenterol. Motil. 14, 133–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Gola, M., Niel, J.P., Delmas, P. & Jacquet, G. Satellite glial cells in situ within mammalian prevertebral ganglia express K+ channels active at rest potential. J. Membr. Biol. 136, 75–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Delmas, P., Niel, J.P. & Gola, M. Muscarinic activation of a novel voltage-sensitive inward current in rabbit prevertebral sympathetic neurons. Eur. J. Neurosci. 8, 598–610 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Copel, C. et al. Activation of neurokinin 3 receptor increases Na(v)1.9 current in enteric neurons. J. Physiol. 587, 1461–1479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wood, J.D. Neuropathophysiology of functional gastrointestinal disorders. World J. Gastroenterol. 13, 1313–1332 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clerc, N., Furness, J.B., Bornstein, J.C. & Kunze, W.A. Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience 82 899–914 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Nurgali, K., Furness, J.B. & Stebbing, M.J. Correlation of electrophysiology, shape and synaptic properties of myenteric AH neurons of the guinea pig distal colon. Auton. Neurosci. 103, 50–64 (2003).

    Article  PubMed  Google Scholar 

  34. Nurgali, K., Stebbing, M.J. & Furness, J.B. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J. Comp. Neurol. 468, 112–124 (2004).

    Article  PubMed  Google Scholar 

  35. Furness, J.B., Robbins, H.L., Xiao, J., Stebbing, M.J. & Nurgali, K. Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res. 317, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Li, W.C., Soffe, S.R. & Roberts, A. A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. J. Neurophysiol. 92, 380–386 (2004).

    Article  PubMed  Google Scholar 

  37. Kunze, W.A., Bornstein, J.C., Furness, J.B., Hendriks, R. & Stephenson, D.S. Charybdotoxin and iberiotoxin but not apamin abolish the slow after-hyperpolarization in myenteric plexus neurons. Pflugers Arch. 428, 300–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, T.K., Burke, E.P. & Shuttleworth, C.W. Topographical and electrophysiological characteristics of highly excitable S neurones in the myenteric plexus of the guinea-pig ileum. J. Physiol. 517, 817–830 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iyer, V. et al. Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. J. Auton. Nerv. Syst. 22, 141–150 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Gola, M. & Niel, J.P. Electrical and integrative properties of rabbit sympathetic neurones re-evaluated by patch clamping non-dissociated cells. J. Physiol. 460, 327–349 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mortensen, M. & Smart, T.G. Single-channel recording of ligand-gated ion channels. Nat. Protoc. 2, 2826–2841 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Walz, W. (ed) Patch-clamp analysis: Advanced Techniques, Second Edition Neuromethods 38 (Humana Press, Totowa, NJ, 2007).

  44. Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Coste, B., Osorio, N., Padilla, F., Crest, M. & Delmas, P. Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol. Cell. Neurosci. 26, 123–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Padilla, F. et al. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol. Cell. Neurosci. 35, 138–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Galligan, J.J., Tatsumi, H., Shen, K.Z., Surprenant, A. & North, R.A. Cation current activated by hyperpolarization (IH) in guinea pig enteric neurons. Am. J. Physiol. 259, G966–G972 (1990).

    CAS  PubMed  Google Scholar 

  48. Wood, J.D. Electrical and synaptic behavior of enteric neurons. In: Handbook of Physiology (eds. Schultz, S.G., Wood, J.D., Ranner, B.B.) 465–516 (American Physiological Society, Bethesda, Maryland, 1989).

  49. Linden, D.R., Sharkey, K.A. & Mawe, G.M. Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J. Physiol. 547, 589–601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lomax, A.E., Mawe, G.M. & Sharkey, K.A. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J. Physiol. 564, 863–875 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunze, W. et al. The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differently to deformation. J. Physiol. 526, 375–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao, Y., Wang, B. & Kunze, W. Characterization of myenteric sensory neurons in the mouse small intestine. J. Neurophysiol. 96, 998–1010 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the CNRS and by grants from the Agence Nationale de la Recherche, Fondation Schlumberger, ARCInca-2006, UPSA, IRME and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

N.O. and P.D. conceived, designed and performed the experiments. N.O. and P.D. wrote the paper.

Corresponding author

Correspondence to Patrick Delmas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osorio, N., Delmas, P. Patch clamp recording from enteric neurons in situ. Nat Protoc 6, 15–27 (2011). https://doi.org/10.1038/nprot.2010.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing