Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and maintenance of single-cell micro-island cultures of basal forebrain neurons

Abstract

Micro-island cultures provide a simplified system for studying the expression of cellular phenotype, excitability, synapse formation and pre- and postsynaptic regulatory mechanisms without the usual problems that arise from complex interactions between large numbers of other cells. The technique relies on the ability to constrain the attachment and growth of either single or small groups of neurons to discrete (20–500 μm) 'islands' of cell-permissive substrate applied over a nonadherent background layer. Constrained in this way, neurons form large numbers of conventional synaptic and/or autaptic contacts that can be easily visualized, making them ideally suited for studying synaptic physiology using electrophysiological and/or high-resolution optical imaging techniques. The protocol described here requires approximately 2 h for preparation of the culture dishes and a further 3–4 h for isolation and plating out the cells. Once established, the cultures can be maintained for prolonged periods (>6 weeks) permitting manipulations to be made to their local environment and the effects on individually identified cells to be repeatedly monitored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Examples of single-cell micro-island cultures of rat basal forebrain neurons set up and maintained on PDL/collagen atomized onto agarose-coated plastic Petri dishes using the methods detailed in the current protocol.

Similar content being viewed by others

References

  1. Furshpan, E.J., MacLeish, P.R., O'Lague, P.H. & Potter, D.D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. USA 73, 4225–4229 (1976).

    Article  CAS  Google Scholar 

  2. Bourque, M.J. & Trudeau, L.E. GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur. J. Neurosci. 12, 3172–3180 (2000).

    Article  CAS  Google Scholar 

  3. Tarsa, L. & Goda, Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 99, 1012–1016 (2002).

    Article  CAS  Google Scholar 

  4. Schluter, O.M., Basu, J., Sudhof, T.C. & Rosenmund, C. Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J. Neurosci. 26, 1239–1246 (2006).

    Article  CAS  Google Scholar 

  5. Furshpan, E.J. Seizure-like activity in cell culture. Epilepsy Res. 10, 24–32 (1991).

    Article  CAS  Google Scholar 

  6. Segal, M.M. Epileptiform activity in microcultures containing one excitatory hippocampal neuron. J. Neurophysiol. 65, 761–770 (1991).

    Article  CAS  Google Scholar 

  7. Segal, M.M. Endogenous bursts underlie seizurelike activity in solitary excitatory hippocampal neurons in microcultures. J. Neurophysiol. 72, 1874–1884 (1994).

    Article  CAS  Google Scholar 

  8. Raman, I.M., Tong, G. & Jahr, C.E. Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16, 415–421 (1996).

    Article  CAS  Google Scholar 

  9. Boehm, S. & Betz, H. Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors. J. Neurosci. 17, 4066–4075 (1997).

    Article  CAS  Google Scholar 

  10. Boehm, S. Presynaptic alpha2-adrenoceptors control excitatory, but not inhibitory, transmission at rat hippocampal synapses. J. Physiol. 519, 439–449 (1999).

    Article  CAS  Google Scholar 

  11. Brody, D.L. & Yue, D.T. Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci. 20, 2480–2494 (2000).

    Article  CAS  Google Scholar 

  12. Tong, G., Malenka, R.C. & Nicoll, R.A. Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. Neuron 16, 1147–1157 (1996).

    Article  CAS  Google Scholar 

  13. Goda, Y. & Stevens, C.F. Readily releasable pool size changes associated with long term depression. Proc. Natl. Acad. Sci. USA 95, 1283–1288 (1998).

    Article  CAS  Google Scholar 

  14. Gomperts, S.N., Rao, A., Craig, A.M., Malenka, R.C. & Nicoll, R.A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 1443–1451 (1998).

    Article  CAS  Google Scholar 

  15. Kimura, F., Otsu, Y. & Tsumoto, T. Presynaptically silent synapses: spontaneously active terminals without stimulus-evoked release demonstrated in cortical autapses. J. Neurophysiol. 77, 2805–2815 (1997).

    Article  CAS  Google Scholar 

  16. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    Article  CAS  Google Scholar 

  17. Johnson, M.D. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12, 433–442 (1994).

    Article  CAS  Google Scholar 

  18. Allen, T.G., Abogadie, F.C. & Brown, D.A. Simultaneous release of glutamate and acetylcholine from single magnocellular “cholinergic” basal forebrain neurons. J. Neurosci. 26, 1588–1595 (2006).

    Article  CAS  Google Scholar 

  19. Joyce, M.P. & Rayport, S. Mesoaccumbens dopamine neuron synapses reconstructed in vitro are glutamatergic. Neuroscience 99, 445–456 (2000).

    Article  CAS  Google Scholar 

  20. Kimura, F. & Baughman, R.W. Distinct muscarinic receptor subtypes suppress excitatory and inhibitory synaptic responses in cortical neurons. J. Neurophysiol. 77, 709–716 (1997).

    Article  CAS  Google Scholar 

  21. Bekkers, J.M. & Stevens, C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  Google Scholar 

  22. Mennerick, S., Que, J., Benz, A. & Zorumski, C.F. Passive and synaptic properties of hippocampal neurons grown in microcultures and in mass cultures. J. Neurophysiol. 73, 320–332 (1995).

    Article  CAS  Google Scholar 

  23. Ullian, E.M., Christopherson, K.S. & Barres, B.A. Role for glia in synaptogenesis. Glia 47, 209–216 (2004).

    Article  Google Scholar 

  24. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

  25. Brewer, G.J. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J. Neurosci. Res. 42, 674–683 (1995).

    Article  CAS  Google Scholar 

  26. Segal, M.M., Baughman, R.W., Jones, K.A. & Huettner, J.E. Mass cultures and microislands of neurons from postnatal rat brain. in Culturing Nerve Cells 2nd edn. (eds. Banker, G. & Goslin, K.) 309–338 (MIT, Cambridge, Massachusetts).

  27. Wainer, B.H. & Mesulam, M.-M. Ascending cholinergic pathways in the rat brain. in Brain Cholinergic Systems (eds. Steriade, M. & Biesold, D.) 65–119 (Oxford University Press, New York, USA).

  28. Segal, M.M. & Furshpan, E.J. Epileptiform activity in microcultures containing small numbers of hippocampal neurons. J. Neurophysiol. 64, 1390–1399 (1990).

    Article  CAS  Google Scholar 

  29. Huettner, J.E. & Baughman, R.W. The pharmacology of synapses formed by identified corticocollicular neurons in primary cultures of rat visual cortex. J. Neurosci. 8, 160–175 (1998).

    Article  Google Scholar 

  30. Chen, G. & van den Pol, A.N. Multiple NPY receptors coexist in pre- and postsynaptic sites: inhibition of GABA release in isolated self-inervating SCN neurons. J. Neurosci. 16, 7711–7724 (1996).

    Article  CAS  Google Scholar 

  31. Radcliffe, k.A. & Dani, J.A. Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J. Neurosci. 18, 7075–7083 (1998).

    Article  CAS  Google Scholar 

  32. Pyott, S.J. & Rosenmund, C. The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons. J. Physiol. 539, 523–535 (2002).

    Article  CAS  Google Scholar 

  33. Nagler, K., Mauch, D.H. & Pfrieger, F.W. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. 533, 665–679 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant PG7909913 from the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G J Allen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T. Preparation and maintenance of single-cell micro-island cultures of basal forebrain neurons. Nat Protoc 1, 2543–2550 (2006). https://doi.org/10.1038/nprot.2006.394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.394

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing