Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How pre-melting on surrounding interfaces broadens solid–liquid phase transitions

Abstract

Phase transitions occur when the chemical potentials (including bulk and interfacial contributions) of two phases are equal. For systems with large interfaces, such as thin films or small particles, their interfacial properties strongly affect the phase behaviour. This dependence is important in fundamental and applied science (sintering, nucleation) but many details are still poorly understood owing to the scarcity of quantitative experimental data. Here, we use solid alkane domains that are one monolayer thick and deposited on a substrate to investigate and quantify the influence of the interface on the solid–liquid phase transition. The domains melt gradually below the bulk melting point of alkane. They coexist with a ‘pre-molten’ liquid-like film of variable temperature-dependent thickness. Molecules interchange reversibly between film and domains, thereby converting transition enthalpy into interfacial energy. (Thus, we obtain details of the intermolecular interactions within the adjacent film.) We show that irrespective of its dimensionality or confinement, every solid will melt (partially) and spread out at temperatures below its bulk melting point if its liquid wets the adjoining interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Partial melting of C40H82 domains (bright areas) on stepwise increase of the temperature.
Figure 2: Coexistence of solid alkane domains with a liquid alkane film as a function of temperature and overall deposited amount of alkane.
Figure 3: Melting temperature as a function of the surface coverage Θ.
Figure 4: Data from Fig.3 plotted as Tb*ΔHfusSF versus the logarithm of Θ0.45 nm.

Similar content being viewed by others

References

  1. Wautelet, M. Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys. 22, 601–611 (2001).

    Article  Google Scholar 

  2. Efremov, M. Y., Olson, E. A., Zhang, M., Zhang, Z. & Allen, L. H. Glass transition in ultrathin polymer films: Calorimetric study. Phys. Rev. Lett. 91, 085703 (2003).

    Article  ADS  Google Scholar 

  3. Hutcheson, S. A. & Mckenna, G. B. Nanosphere embedding into polymer surfaces: A viscoelastic contact mechanics analysis. Phys. Rev. Lett. 94, 189902 (2005).

    Article  ADS  Google Scholar 

  4. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    Article  ADS  Google Scholar 

  5. Davey, R. J. Crystallization—How come you look so good? Nature 428, 374–375 (2004).

    Article  ADS  Google Scholar 

  6. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  ADS  Google Scholar 

  7. Lazar, P. & Riegler, H. Reversible self-propelled droplet movement: A new driving mechanism. Phys. Rev. Lett. 95, 136103 (2005).

    Article  ADS  Google Scholar 

  8. Lazar, P., Schollmeyer, H. & Riegler, H. Spreading and two-dimensional mobility of long-chain alkanes at solid/gas interfaces. Phys. Rev. Lett. 94, 116101 (2005).

    Article  ADS  Google Scholar 

  9. Merkl, C., Pfohl, T. & Riegler, H. Influence of the molecular ordering on the wetting of SiO2/air interfaces by alkanes. Phys. Rev. Lett. 79, 4625–4628 (1997).

    Article  ADS  Google Scholar 

  10. Schollmeyer, H., Struth, B. & Riegler, H. Long chain n-alkanes at SiO2/air interfaces: Molecular ordering, annealing, and surface freezing of triacontane in the case of excess and submonolayer coverage. Langmuir 19, 5042–5051 (2003).

    Article  Google Scholar 

  11. Kohler, R., Lazar, P. & Riegler, H. Optical imaging of thin films with molecular depth resolution. Appl. Phys. Lett. 89, 241906 (2006).

    Article  ADS  Google Scholar 

  12. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  13. Adamson, A. Physical Chemistry of Surfaces (Wiley, New York, 1990).

    Google Scholar 

  14. Dirand, M. et al. Temperatures and enthalpies of (solid plus solid) and (solid plus liquid) transitions of n-alkanes. J. Chem. Thermodyn. 34, 1255–1277 (2002).

    Article  Google Scholar 

  15. Wilen, L. A., Wettlaufer, J. S., Elbaum, M. & Schick, M. Dispersion-force effects in interfacial premelting of ice. Phys. Rev. B 52, 12426–12433 (1995).

    Article  ADS  Google Scholar 

  16. Widom, B. What do we know that van der Waals did not know? Physica A 263, 500–515 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. Wettlaufer, J. S. & Dash, J. G. Melting below zero. Sci. Am. 282, 50–53 (2000).

    Article  Google Scholar 

  18. Dash, J. G. History of the search for continuous melting. Rev. Mod. Phys. 71, 1737–1743 (1999).

    Article  ADS  Google Scholar 

  19. Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    Article  ADS  Google Scholar 

  20. Wettlaufer, J. S. & Worster, M. G. Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427–452 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A 173, 1–38 (2000).

    Article  Google Scholar 

  22. Graf, K. & Riegler, H. Molecular adhesion interactions between Langmuir monolayers and solid substrates. Colloids Surf. A 131, 215–224 (1998).

    Article  Google Scholar 

  23. Holzwarth, A., Leporatti, S. & Riegler, H. Molecular ordering and domain morphology of molecularly thin triacontane films at SiO2/air interfaces. Europhys. Lett. 52, 653–659 (2000).

    Article  ADS  Google Scholar 

  24. Knufing, L., Schollmeyer, H., Riegler, H. & Mecke, K. Fractal analysis methods for solid alkane monolayer domains at SiO2/air interfaces. Langmuir 21, 992–1000 (2005).

    Article  Google Scholar 

  25. Schollmeyer, H., Ocko, B. & Riegler, H. Surface freezing of triacontane at SiOx/air interfaces: Submonolayer coverage. Langmuir 18, 4351–4355 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Moehwald for supporting this research, A. Heilig for the preparation of the alkane stock solutions and H. Wetzel from the Fraunhofer Institut fuer Angewandte Polymerforschung (Potsdam) for checking the purity of the alkanes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Riegler.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riegler, H., Köhler, R. How pre-melting on surrounding interfaces broadens solid–liquid phase transitions. Nature Phys 3, 890–894 (2007). https://doi.org/10.1038/nphys754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys754

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing