Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

Abstract

Recent discoveries regarding current-induced spin–orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin–orbit torques have an important limitation—the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin–orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin–orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin–orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample geometry and sample ST-FMR results.
Figure 2: Angular dependence of ST-FMR signals.
Figure 3: Spin–orbit torque for current along the high-symmetry WTe2 b-axis.
Figure 4: Dependence of the spin–orbit torques on the angle of applied current and the thickness of WTe2.

Similar content being viewed by others

References

  1. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  ADS  Google Scholar 

  2. Zhang, C., Fukami, S., Sato, H., Matsukura, F. & Ohno, H. Spin–orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Appl. Phys. Lett. 107, 012401 (2015).

    Article  ADS  Google Scholar 

  3. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  ADS  Google Scholar 

  4. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  ADS  Google Scholar 

  5. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  ADS  Google Scholar 

  6. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  ADS  Google Scholar 

  7. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  ADS  Google Scholar 

  8. Liu, L. et al. Spin-torque switching with giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  9. Pai, C. F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  ADS  Google Scholar 

  10. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013).

    Article  ADS  Google Scholar 

  11. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  ADS  Google Scholar 

  12. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  13. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. P. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  14. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  ADS  Google Scholar 

  15. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  ADS  Google Scholar 

  16. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013).

    Article  ADS  Google Scholar 

  17. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  18. Sun, J. Z. Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

    Article  ADS  Google Scholar 

  19. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  Google Scholar 

  20. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga, Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  ADS  Google Scholar 

  21. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).

    Article  ADS  Google Scholar 

  22. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotech. 9, 211–217 (2014).

    Article  ADS  Google Scholar 

  23. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  ADS  Google Scholar 

  24. Skinner, T. D. et al. Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat. Commun. 6, 6730 (2015).

    Article  ADS  Google Scholar 

  25. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  26. Jiang, J. et al. Signature of strong spin–orbital coupling in the large nonsaturating magnetoresistance material WTe2 . Phys. Rev. Lett. 115, 166601 (2015).

    Article  ADS  Google Scholar 

  27. Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2 . Phys. Rev. Lett. 114, 176601 (2015).

    Article  ADS  Google Scholar 

  28. Rhodes, D. et al. Role of spin–orbit coupling and evolution of the electronic structure of WTe2 under an external magnetic field. Phys. Rev. Lett. 92, 125152 (2015).

    Google Scholar 

  29. Wang, L. et al. Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 6, 8892 (2015).

    Article  ADS  Google Scholar 

  30. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  ADS  Google Scholar 

  31. Huang, Q. H. et al. Electronics and Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  32. Zhang, W. et al. Research update: spin transfer torques in permalloy on monolayer MoS2 . APL Mater. 4, 032302 (2016).

    Article  ADS  Google Scholar 

  33. Cheng, C. et al. Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumping. Preprint at http://arXiv.org/abs/1510.03451 (2015).

  34. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2 . Acta Crystallogr. 20, 268–274 (1966).

    Article  Google Scholar 

  35. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotech. 9, 548–554 (2014).

    Article  ADS  Google Scholar 

  36. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  ADS  Google Scholar 

  37. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    Article  ADS  Google Scholar 

  38. Yu, G. et al. Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation. Phys. Rev. B 89, 104421 (2014).

    Article  ADS  Google Scholar 

  39. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  ADS  Google Scholar 

  40. Mikuszeit, N. et al. Spin–orbit torque driven chiral magnetization reversal in ultrathin nanostructures. Phys. Rev. B 92, 144424 (2015).

    Article  ADS  Google Scholar 

  41. Rojas-Sanchez, J.-C. et al. Perpendicular magnetization reversal in Pt/[Co/Ni]3/Al multilayers via the spin Hall effect of Pt. Appl. Phys. Lett. 108, 082406 (2016).

    Article  ADS  Google Scholar 

  42. Kong, W.-D. et al. Raman scattering investigation of large positive magnetoresistance material WTe2 . Appl. Phys. Lett. 106, 081906 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. D. Reynolds for experimental assistance, R. De Alba for help with the graphics, and G. D. Fuchs and P. G. Gowtham for comments on the manuscript. This work was supported by the National Science Foundation (DMR-1406333) and the Army Research Office (W911NF-15-1-0447). G.M.S. acknowledges support by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144153. M.H.D.G. acknowledges support by the Netherlands Organization for Scientific Research (NWO 680-50-1311) and the Kavli Institute at Cornell for Nanoscale Science. This work made use of the NSF-supported Cornell Nanoscale Facility (ECCS-1542081), the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC Program (DMR-1120296), and the NSF-supported Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM) (DMR-1539918).

Author information

Authors and Affiliations

Authors

Contributions

D.M., G.M.S., M.H.D.G. and D.C.R. conceived the idea for the experiment. D.M. performed the sample fabrication. G.M.S. made the measurements. D.M. and G.M.S. performed the analysis with help from M.H.D.G., R.A.B., J.P. and D.C.R. D.M., G.M.S. and D.C.R. wrote the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to D. C. Ralph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacNeill, D., Stiehl, G., Guimaraes, M. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nature Phys 13, 300–305 (2017). https://doi.org/10.1038/nphys3933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing