Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyper-transport of light and stochastic acceleration by evolving disorder

Abstract

In 1958, Philip Anderson argued that disorder can transform a conductor into an insulator, as multiple scattering from disorder brings transport to a complete halt. This concept, known as Anderson localization, has been tested in electronic, optical, acoustic and matter wave systems, which have all shown that disorder generally works to arrest transport. One major condition is common to all work on Anderson localization: for localization to take place, the underlying potential must be constant in time (frozen). Otherwise, if the disorder is dynamically evolving, localization breaks down and diffusive transport is expected to prevail. However, it seems natural to ask: can disorder increase the transport rate beyond diffusion, possibly even beyond ballistic transport? Here, we use a paraxial optical setting as a model system, and demonstrate experimentally and numerically that an evolving random potential gives rise to stochastic acceleration, which causes an initial wave packet to expand at a rate faster than ballistic, while its transverse momentum spectrum continuously expands. We discuss the universal aspects of the phenomenon relevant for all wave systems containing disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme for studying hyper-transport of light by virtue of evolving disorder.
Figure 2: Experiments demonstrating hyper-transport of light, by controlling the evolution rate of spatial disorder.
Figure 3: Experiments and simulations showing the evolution of the momentum power spectrum of the wave packet propagating through the disordered photonic medium.

Similar content being viewed by others

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  ADS  Google Scholar 

  3. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  4. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  5. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  6. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  ADS  Google Scholar 

  7. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  ADS  Google Scholar 

  8. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  9. Giacomo, R. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  Google Scholar 

  10. Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization of ultracold matter. Science 334, 66–68 (2011).

    Article  ADS  Google Scholar 

  11. Jendrzejewski, F. et al. Three dimensional localization of ultracold atoms in an optical trap. Nature Phys. 8, 398–403 (2012).

    Article  ADS  Google Scholar 

  12. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three dimensional elastic network. Nature Phys. 4, 945–948 (2008).

    Article  ADS  Google Scholar 

  13. Kampen, N. V. Stochastic Processes in Physics and Chemistry 3rd edn (North Holland, 2007).

    MATH  Google Scholar 

  14. Zaslavskii, G. M. & Chirikov, B. V. Stochastic instability of nonlinear oscillation. Sov. Phys. Usp. 14, 549–567 (1972).

    Article  ADS  Google Scholar 

  15. Jayannavar, A. M. & Kumar, N. Nondiffusive quantum transport in a dynamically disordered medium. Phys. Rev. Lett. 48, 553–556 (1982).

    Article  ADS  Google Scholar 

  16. Golubovic, L., Feng, S. & Zeng, F. Classical and quantum superdiffusion in a time-dependent random potential. Phys. Rev. Lett. 67, 2115–2118 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  17. Rosenbluth, M. N. Comment on Classical and quantum superdiffusion in a time-dependent random potential. Phys. Rev. Lett. 69, 1831–1831 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  18. Arvedson, E., Wilkinson, M., Mehlig, B. & Nakamura, K. Staggered ladder spectra. Phys. Rev. Lett. 96, 030601 (2006).

    Article  ADS  Google Scholar 

  19. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1988).

    Article  ADS  Google Scholar 

  20. Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009).

    Article  ADS  Google Scholar 

  21. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).

    Article  ADS  Google Scholar 

  22. Martin, L. et al. Anderson localization in optical waveguide arrays with off-diagonal coupling disorder. Opt. Express 19, 13636–13646 (2011).

    Article  ADS  Google Scholar 

  23. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

    Article  ADS  Google Scholar 

  24. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Article  ADS  Google Scholar 

  25. Szameit, A. et al. Wave localization at the boundary of disordered photonic lattices. Opt. Lett. 35, 1172–1174 (2010).

    Article  ADS  Google Scholar 

  26. Barthelemy, P., Bertolotti, J. & Wiersma, D. S. A Lévy flight for light. Nature 453, 495–498 (2008).

    Article  ADS  Google Scholar 

  27. Zhang, S., Park, J., Milner, V. & Genack, A. Z. Photon delocalization transition in dimensional crossover in layered media. Phys. Rev. Lett. 101, 183901 (2008).

    Article  ADS  Google Scholar 

  28. Efremidis, N. K., Sears, S. & Christodoulides, D. N. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    Article  ADS  Google Scholar 

  29. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003).

    Article  ADS  Google Scholar 

  30. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  ADS  Google Scholar 

  31. Segev, M., Valley, G. C., Crosignani, B., DiPorto, P. & Yariv, A. Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994).

    Article  ADS  Google Scholar 

  32. Gurevich, E. & Kenneth, O. Lyapunov exponent for the laser speckle potential: A weak disorder expansion. Phys. Rev. A 79, 063617 (2009).

    Article  ADS  Google Scholar 

  33. Lugan, P. et al. One-dimensional Anderson localization in certain correlated random potentials. Phys. Rev. A 80, 023605 (2009).

    Article  ADS  Google Scholar 

  34. Shapiro, B. Cold atoms in the presence of disorder. J. Phys. A 45, 143001 (2012).

    Article  ADS  Google Scholar 

  35. Krivolapov, Y., Levi, L., Fishman, S., Segev, M. & Wilkinson, M. Super-diffusion in optical realizations of Anderson localization. New J. Phys. 14, 043047 (2012).

    Article  ADS  Google Scholar 

  36. Krivolapov, Y. & Fishman, S. Universality classes of transport in time-dependent random potentials. Phys. Rev. E 86, 030103 (2012).

    Article  ADS  Google Scholar 

  37. Saleh, B.E.A. & Teich, M.C. Fundamentals of Photonics Ch. 20 (Wiley, 1991).

    Book  Google Scholar 

  38. Moharam, M. G. & Young, L. Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 17, 1757–1759 (1978).

    Article  ADS  Google Scholar 

  39. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article  ADS  Google Scholar 

  40. Abouraddy, A. F., Di Guiseppe, G., Christodoulides, D. N. & Saleh, B. E. A. Anderson localization and co-localization of spatially entangled photons. Phys. Rev. A 86, 040302 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by an Advanced Grant from the European Research Council, by the Israel Science Foundation and by the USA–Israel Binational Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were carried out by L.L. All authors contributed to this research.

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, L., Krivolapov, Y., Fishman, S. et al. Hyper-transport of light and stochastic acceleration by evolving disorder. Nature Phys 8, 912–917 (2012). https://doi.org/10.1038/nphys2463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing