Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical assembly of presynaptic components in defined C. elegans synapses

Abstract

The presynaptic regions of axons accumulate synaptic vesicles, active zone proteins and periactive zone proteins. However, the rules for orderly recruitment of presynaptic components are not well understood. We systematically examined molecular mechanisms of presynaptic development in egg-laying synapses of Caenorhabditis elegans, demonstrating that two scaffolding molecules, SYD-1 and SYD-2, have key roles in presynaptic assembly. SYD-2 (liprin-α) was previously shown to regulate the size and the shape of active zones. We now show that in syd-1 and syd-2 mutants, synaptic vesicles and numerous other presynaptic proteins fail to accumulate at presynaptic sites. SYD-1 and SYD-2 function cell-autonomously at presynaptic terminals, downstream of synaptic specificity molecule SYG-1. SYD-1 is likely to act upstream of SYD-2 to positively regulate its synaptic assembly activity. These data imply a hierarchical organization of presynaptic assembly, in which transmembrane specificity molecules initiate synaptogenesis by recruiting a few key scaffolding proteins, which in turn assemble other presynaptic components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP- or YFP-tagged known and putative presynaptic proteins localize to the synaptic region of HSNL near the vulva.
Figure 2: Multiple presynaptic components mislocalize in syg-1(ky652) mutants.
Figure 3: SYG-1 is sufficient to recruit presynaptic components.
Figure 4: Three presynaptic components show severe defects in localizing to the synaptic region of HSNL in syd-1 and syd-2 mutants.
Figure 5: SYD-1 and SYD-2 function cell-autonomously in HSNL and SYD-2 overexpression can bypass requirement for SYD-1.
Figure 6: Some, but not all, presynaptic components fail to be trafficked out of the HSNL cell body in unc-104 mutants.
Figure 7: Epistasis analysis of syg-1, syd-1 and syd-2.

Similar content being viewed by others

References

  1. Ziv, N.E. & Garner, C.C. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ackley, B.D. & Jin, Y. Genetic analysis of synaptic target recognition and assembly. Trends Neurosci. 27, 540–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Shen, K. & Bargmann, C.I. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112, 619–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Shen, K., Fetter, R.D. & Bargmann, C.I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Umemori, H., Linhoff, M.W., Ornitz, D.M. & Sanes, J.R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Christopherson, K.S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, K.G. et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bamji, S.X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  16. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H. & Van Vactor, D. Drosophila liprin-α and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Ackley, B.D. et al. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J. Neurosci. 25, 7517–7528 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+-channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, E.H., Hung, W., Abrams, B. & Zhen, M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nakata, K. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120, 407–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Schaefer, A.M., Hadwiger, G.D. & Nonet, M.L. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Zhen, M., Huang, X., Bamber, B. & Jin, Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26, 331–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wan, H.I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Koh, T.W., Verstreken, P. & Bellen, H.J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Marie, B. et al. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hata, Y., Butz, S. & Sudhof, T.C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Butz, S., Okamoto, M. & Sudhof, T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Olsen, O. et al. Neurotransmitter release regulated by a MALS-liprin-α presynaptic complex. J. Cell Biol. 170, 1127–1134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serra-Pages, C. et al. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schoch, S. et al. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ko, J. et al. Interaction between liprin-α and GIT1 is required for AMPA receptor targeting. J. Neurosci. 23, 1667–1677 (2003a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ko, J., Na, M., Kim, S., Lee, J.R. & Kim, E. Interaction of the ERC family of RIM-binding proteins with the liprin-α family of multidomain proteins. J. Biol. Chem. 278, 42377–42385 (2003b).

    Article  CAS  PubMed  Google Scholar 

  35. Ohtsuka, T. et al. Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13–1. J. Cell Biol. 158, 577–590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takao-Rikitsu, E. et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J. Cell Biol. 164, 301–311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  38. Fischer von Mollard, G., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R. & Sudhof, T.C. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87, 1988–1992 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crump, J.G., Zhen, M., Jin, Y. & Bargmann, C.I. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29, 115–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hallam, S.J., Goncharov, A., McEwen, J., Baran, R. & Jin, Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat. Neurosci. 5, 1137–1146 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Inoue, E. et al. SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 50, 261–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, K.E. et al. Direct observation demonstrates that liprin-α is required for trafficking of synaptic vesicles. Curr. Biol. 15, 684–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wyszynski, M. et al. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron 34, 39–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hall, D.H. & Hedgecock, E.M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Shin, H. et al. Association of the kinesin motor KIF1A with the multimodular protein Liprin-α. J. Biol. Chem. 278, 11393–11401 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeh, E., Kawano, T., Weimer, R.M., Bessereau, J.L. & Zhen, M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J. Neurosci. 25, 3833–3841 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Chao (Stanford University) for contributing alleles of syd-1 and syd-2; the Caenorhabditis Genetics Centre, Y. Jin (University of California, Santa Cruz), the C. elegans Gene Knockout Consortium and the Japanese NBPR for strains; Y. Kohara (National Institute of Genetics, Japan) for EST cDNAs; M. Nonet (Washington University, St. Louis) for the rab-3 cDNA construct and J. Audhya (University of California, San Diego) for the mcherry cDNA; Y. Jin for communicating unpublished results; C. Gao and F. Chen for technical support; C. Garner for critical comments on the manuscript. This work was funded by the following grants to K.S.: US National Institutes of Health 1R01NS048392, the McKnight Endowment Fund, Sloan research fellowship and Whitehall Foundation fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Colocalization of different presynaptic components with RAB-3. (PDF 708 kb)

Supplementary Fig. 2

Colocalization of SYD-1 and SYD-2 with RAB-3 at ectopic sites in syg-1 mutants. (PDF 391 kb)

Supplementary Fig. 3

Egg-laying defects in syd-1 and syd-2 mutant animals. (PDF 544 kb)

Supplementary Fig. 4

SYD-1 and SYD-2 are necessary for clustering of presynaptic components induced by egl-17::syg-2. (PDF 804 kb)

Supplementary Fig. 5

Presynaptic components accumulate normally in animals that are mutant for active zone components elks-1 or unc-10. (PDF 489 kb)

Supplementary Fig. 6

Dependence of some but not all synaptic components on SAD-1 for their localization to presynaptic sites. (PDF 427 kb)

Supplementary Fig. 7

A model for the hierarchical presynaptic assembly of HSNL synapses. (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M., Lehrman, E., Poon, V. et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9, 1488–1498 (2006). https://doi.org/10.1038/nn1806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing