Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice

This article has been updated

Abstract

The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus–specific knockdown of phospholipase C β4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca2+ currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective extinction of auditory-conditioned fear memory in Plcb4−/− mice.
Figure 2: Blockade of the mediodorsal thalamic mGluR1-PLCβ4 pathway inhibits fear extinction.
Figure 3: Stronger low-threshold burst firing and enhanced LVCCs in mediodorsal thalamic nucleus neurons of Plcb4−/− mice.
Figure 4: Accelerating effect of an intra–mediodorsal thalamic nucleus infusion of a T-type Ca2+ channel blocker on fear extinction learning, but not on consolidation of extinction.
Figure 5: Changes in conditioned stimulus–evoked burst and tonic firing patterns of mediodorsal thalamic nucleus neurons in wild-type and Plcb4−/− mice during extinction learning.
Figure 6: Opposite effects of mediodorsal thalamic nucleus electric stimulation, mimicking dual firing, on fear extinction learning.

Similar content being viewed by others

Change history

  • 08 January 2012

    In the version of this article initially published online, Plcb4 was misspelled Plcb44 in two places. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Ray, J.P. & Price, J.L. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J. Comp. Neurol. 323, 167–197 (1992).

    Article  CAS  Google Scholar 

  2. Ray, J.P. & Price, J.L. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 337, 1–31 (1993).

    Article  CAS  Google Scholar 

  3. Jones, E.G. The Thalamus (Cambridge University Press, Cambridge, 2007).

  4. Fanselow, M.S. & Poulos, A.M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  Google Scholar 

  5. Paré, D., Quirk, G.J. & Ledoux, J.E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  Google Scholar 

  6. Van der Werf, Y.D., Witter, M.P., Uylings, H.B. & Jolles, J. Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38, 613–627 (2000).

    Article  CAS  Google Scholar 

  7. Zoppelt, D., Koch, B., Schwarz, M. & Daum, I. Involvement of the mediodorsal thalamic nucleus in mediating recollection and familiarity. Neuropsychologia 41, 1160–1170 (2003).

    Article  Google Scholar 

  8. Mitchell, A.S. & Dalrymple-Alford, J.C. Dissociable memory effects after medial thalamus lesions in the rat. Eur. J. Neurosci. 22, 973–985 (2005).

    Article  Google Scholar 

  9. Mitchell, A.S. & Gaffan, D. The magnocellular mediodorsal thalamus is necessary for memory acquisition, but not retrieval. J. Neurosci. 28, 258–263 (2008).

    Article  CAS  Google Scholar 

  10. Hunt, P.R. & Aggleton, J.P. Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: a deficit in shifting response rules. J. Neurosci. 18, 10045–10052 (1998).

    Article  CAS  Google Scholar 

  11. Winocur, G. Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions. Behav. Brain Res. 38, 145–154 (1990).

    Article  CAS  Google Scholar 

  12. Li, X.B., Inoue, T., Nakagawa, S. & Koyama, T. Effect of mediodorsal thalamic nucleus lesion on contextual fear conditioning in rats. Brain Res. 1008, 261–272 (2004).

    Article  CAS  Google Scholar 

  13. Inoue, T. et al. Selective serotonin reuptake inhibitor reduces conditioned fear through its effect in the amygdala. Eur. J. Pharmacol. 497, 311–316 (2004).

    Article  CAS  Google Scholar 

  14. Herry, C. & Garcia, R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J. Neurosci. 22, 577–583 (2002).

    Article  CAS  Google Scholar 

  15. Hugues, S. & Garcia, R. Reorganization of learning-associated prefrontal synaptic plasticity between the recall of recent and remote fear extinction memory. Learn. Mem. 14, 520–524 (2007).

    Article  Google Scholar 

  16. Garcia, R., Chang, C.H. & Maren, S. Electrolytic lesions of the medial prefrontal cortex do not interfere with long-term memory of extinction of conditioned fear. Learn. Mem. 13, 14–17 (2006).

    Article  Google Scholar 

  17. Llinás, R. & Jahnsen, H. Electrophysiology of mammalian thalamic neurones in vitro. Nature 297, 406–408 (1982).

    Article  Google Scholar 

  18. Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).

    Article  CAS  Google Scholar 

  19. McCormick, D.A. & von Krosigk, M. Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778 (1992).

    Article  CAS  Google Scholar 

  20. Nakamura, M. et al. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20, 2929–2944 (2004).

    Article  Google Scholar 

  21. Cheong, E. et al. Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca2+ channels controls pain sensory gating in the thalamus. J. Neurosci. 28, 13331–13340 (2008).

    Article  CAS  Google Scholar 

  22. Miyata, M. et al. Role of thalamic phospholipase C[β]4 mediated by metabotropic glutamate receptor type 1 in inflammatory pain. J. Neurosci. 23, 8098–8108 (2003).

    Article  CAS  Google Scholar 

  23. Cheong, E. et al. Deletion of phospholipase C β4 in thalamocortical relay nucleus leads to absence seizures. Proc. Natl. Acad. Sci. USA 106, 21912–21917 (2009).

    Article  CAS  Google Scholar 

  24. Steriade, M. & Llinas, R.R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649–742 (1988).

    Article  CAS  Google Scholar 

  25. McCormick, D.A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  Google Scholar 

  26. Jiang, H. et al. Phospholipase C β4 is involved in modulating the visual response in mice. Proc. Natl. Acad. Sci. USA 93, 14598–14601 (1996).

    Article  CAS  Google Scholar 

  27. Vergnes, M., Marescaux, C. & Depaulis, A. Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy. Brain Res. 523, 87–91 (1990).

    Article  CAS  Google Scholar 

  28. Riban, V. et al. Modifications of local cerebral glucose utilization in thalamic structures following injection of a dopaminergic agonist in the nucleus accumbens: involvement in antiepileptic effects? Exp. Neurol. 188, 452–460 (2004).

    Article  CAS  Google Scholar 

  29. Liu, X.B., Munoz, A. & Jones, E.G. Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J. Comp. Neurol. 395, 450–465 (1998).

    Article  CAS  Google Scholar 

  30. McCormick, D.A. & Pape, H.C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. (Lond.) 431, 291–318 (1990).

    Article  CAS  Google Scholar 

  31. Martin, R.L., Lee, J.H., Cribbs, L.L., Perez-Reyes, E. & Hanck, D.A. Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther. 295, 302–308 (2000).

    CAS  PubMed  Google Scholar 

  32. Vertes, R.P. Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J. Comp. Neurol. 442, 163–187 (2002).

    Article  Google Scholar 

  33. Sotres-Bayon, F. & Quirk, G.J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 20, 231–235 (2010).

    Article  CAS  Google Scholar 

  34. Zhang, D.X. & Bertram, E.H. Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala. J. Neurosci. 22, 3277–3284 (2002).

    Article  CAS  Google Scholar 

  35. Likhtik, E., Pelletier, J.G., Paz, R. & Pare, D. Prefrontal control of the amygdala. J. Neurosci. 25, 7429–7437 (2005).

    Article  CAS  Google Scholar 

  36. Llinás, R., Ribary, U., Contreras, D. & Pedroarena, C. The neuronal basis for consciousness. Phil. Trans. R. Soc. Lond. B 353, 1841–1849 (1998).

    Article  Google Scholar 

  37. Swadlow, H.A. & Gusev, A.G. The impact of ′bursting′ thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402–408 (2001).

    Article  CAS  Google Scholar 

  38. Van der Werf, Y.D., Witter, M.P. & Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev. 39, 107–140 (2002).

    Article  Google Scholar 

  39. Portas, C.M. et al. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J. Neurosci. 18, 8979–8989 (1998).

    Article  CAS  Google Scholar 

  40. LaBerge, D. Attention, awareness, and the triangular circuit. Conscious. Cogn. 6, 149–181 (1997).

    Article  Google Scholar 

  41. LaBerge, D. & Buchsbaum, M.S. Positron emission tomographic measurements of pulvinar activity during an attention task. J. Neurosci. 10, 613–619 (1990).

    Article  CAS  Google Scholar 

  42. Lanius, R.A. et al. Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol. Psychiatry 53, 204–210 (2003).

    Article  Google Scholar 

  43. Bremner, J.D. et al. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol. Psychiatry 45, 806–816 (1999).

    Article  CAS  Google Scholar 

  44. Kim, D. et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290–293 (1997).

    Article  CAS  Google Scholar 

  45. Kim, D.S. et al. Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. J. Comp. Neurol. 511, 581–598 (2008).

    Article  Google Scholar 

  46. Shin, J. et al. Phospholipase C β4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J. Neurosci. 29, 15375–15385 (2009).

    Article  CAS  Google Scholar 

  47. Guido, W., Lu, S.M. & Sherman, S.M. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J. Neurophysiol. 68, 2199–2211 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Park for assistance with animal care and I. Hong for behavioral tests in the beginning of this work. This work was supported by a grant from the National Honor Scientist Program of Korea and a grant from the 21C Frontier Proteomics Program of the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Contributions

Sukchan Lee and H.-S.S. designed the experiments and wrote the manuscript. S.J.K. helped write the manuscript. S.C. was involved in the design of the initial behavioral experiments. Sukchan Lee and H.K. performed all surgery, microinjection and microstimulation, and analyzed the data. Sukchan Lee, T.A. and J.C. performed in vivo electrophysiology. Soojung Lee performed slice electrophysiology. D.-S.K. was responsible for immunostaining. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hee-Sup Shin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Ahmed, T., Lee, S. et al. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice. Nat Neurosci 15, 308–314 (2012). https://doi.org/10.1038/nn.2999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing