Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain

Abstract

TRPV1 is the founding and best-studied member of the family of temperature-activated transient receptor potential ion channels (thermoTRPs). Voltage, chemicals and heat allosterically gate TRPV1. Molecular determinants of TRPV1 activation by capsaicin, allicin, acid, ammonia and voltage have been identified. However, the structures and mechanisms mediating TRPV1's pronounced temperature sensitivity remain unclear. Recent studies of the related channel TRPV3 identified residues in the pore region that are required for heat activation. We used both random and targeted mutagenesis screens of rat TRPV1 and identified point mutations in the outer pore region that specifically impair temperature activation. Single-channel analysis indicated that TRPV1 mutations disrupted heat sensitivity by ablating long channel openings, which are part of the temperature-gating pathway. We propose that sequential occupancy of short and long open states on activation provides a mechanism for enhancing temperature sensitivity. Our results suggest that the outer pore is important for the heat sensitivity of thermoTRPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical, acid and temperature responses of TRPV1 and point mutants.
Figure 2: Location of point mutations.
Figure 3: Voltage activation of wild-type TRPV1 and point mutants at different temperatures and during capsaicin activation.
Figure 4: Single-channel currents of TRPV1 and triple mutant at different temperatures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Caterina, M.J. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R64–R76 (2007).

    Article  CAS  Google Scholar 

  2. Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  Google Scholar 

  3. Dhaka, A. et al. TRPV1 is activated by both acidic and basic pH. J. Neurosci. 29, 153–158 (2009).

    Article  CAS  Google Scholar 

  4. Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA 101, 15494–15499 (2004).

    Article  CAS  Google Scholar 

  5. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  Google Scholar 

  6. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  7. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    Article  CAS  Google Scholar 

  8. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  9. Davis, J.B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  CAS  Google Scholar 

  10. Güler, A.D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  Google Scholar 

  11. McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  Google Scholar 

  12. Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  Google Scholar 

  13. Peier, A.M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  Google Scholar 

  14. Smith, G.D. et al. TRPV3 is a temperature-sensitive vanilloid receptor–like protein. Nature 418, 186–190 (2002).

    Article  CAS  Google Scholar 

  15. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  Google Scholar 

  16. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  Google Scholar 

  17. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  Google Scholar 

  18. Togashi, K. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804–1815 (2006).

    Article  CAS  Google Scholar 

  19. Gavva, N.R. et al. Molecular determinants of vanilloid sensitivity in TRPV1. J. Biol. Chem. 279, 20283–20295 (2004).

    Article  CAS  Google Scholar 

  20. Jordt, S.E. & Julius, D. Molecular basis for species-specific sensitivity to 'hot' chili peppers. Cell 108, 421–430 (2002).

    Article  CAS  Google Scholar 

  21. Jordt, S.E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 97, 8134–8139 (2000).

    Article  CAS  Google Scholar 

  22. Ryu, S., Liu, B., Yao, J., Fu, Q. & Qin, F. Uncoupling proton activation of vanilloid receptor TRPV1. J. Neurosci. 27, 12797–12807 (2007).

    Article  CAS  Google Scholar 

  23. Ahern, G.P., Brooks, I.M., Miyares, R.L. & Wang, X.B. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J. Neurosci. 25, 5109–5116 (2005).

    Article  CAS  Google Scholar 

  24. Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci. 11, 255–261 (2008).

    Article  CAS  Google Scholar 

  25. Nilius, B. et al. Gating of TRP channels: a voltage connection? J. Physiol. (Lond.) 567, 35–44 (2005).

    Article  CAS  Google Scholar 

  26. Voets, T., Owsianik, G., Janssens, A., Talavera, K. & Nilius, B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat. Chem. Biol. 3, 174–182 (2007).

    Article  CAS  Google Scholar 

  27. Latorre, R., Brauchi, S., Orta, G., Zaelzer, C. & Vargas, G. ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42, 427–438 (2007).

    Article  CAS  Google Scholar 

  28. Matta, J.A. & Ahern, G.P. Voltage is a partial activator of thermo-sensitive TRP channels. J. Physiol. 585, 469–482 (2007).

    Article  CAS  Google Scholar 

  29. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  Google Scholar 

  30. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat. Neurosci. 11, 1007–1013 (2008).

    Article  CAS  Google Scholar 

  31. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  32. Liu, B., Hui, K. & Qin, F. Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys. J. 85, 2988–3006 (2003).

    Article  CAS  Google Scholar 

  33. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  34. Premkumar, L.S., Agarwal, S. & Steffen, D. Single-channel properties of native and cloned rat vanilloid receptors. J. Physiol. (Lond.) 545, 107–117 (2002).

    Article  CAS  Google Scholar 

  35. Hui, K., Liu, B. & Qin, F. Capsaicin activation of the pain receptor VR1: multiple open states from both partial and full binding. Biophys. J. 84, 2957–2968 (2003).

    Article  CAS  Google Scholar 

  36. Talavera, K., Nilius, B. & Voets, T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends Neurosci. 31, 287–295 (2008).

    Article  CAS  Google Scholar 

  37. Kern, D. & Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).

    Article  CAS  Google Scholar 

  38. Yang, F., Cui, Y., Wang, K. & Zheng, J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. USA 107, 7083–7088 (2010).

    Article  CAS  Google Scholar 

  39. Brauchi, S. et al. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc. Natl. Acad. Sci. USA 104, 10246–10251 (2007).

    Article  CAS  Google Scholar 

  40. Myers, B.R., Bohlen, C.J. & Julius, D. A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58, 362–373 (2008).

    Article  CAS  Google Scholar 

  41. Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat. Neurosci. 9, 493–500 (2006).

    Article  CAS  Google Scholar 

  42. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

  43. Qin, F., Auerbach, A. & Sachs, F. Maximum likelihood estimation of aggregated Markov processes. Proc. Biol. Sci. 264, 375–383 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Marelli and T. Orth for preparing mini-prep DNA, M. Caterina for providing rat TRPV1 plasmid DNA, and B. Coste for critical reading of the manuscript. This research was supported by the US National Institutes of Health, the Novartis Research Foundation and a fellowship to J.G. from the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

J.G. designed the study, collected and analyzed data, and wrote the manuscript. S.E.K. collected and analyzed data in the primary screen. V.U. prepared the mutant library and collected and analyzed data in the primary screen. B.B. performed molecular modeling. M.P. prepared the mutant library. M.B. developed the screening conditions. A.P. designed the study and edited the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ardem Patapoutian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 743 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandl, J., Kim, S., Uzzell, V. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13, 708–714 (2010). https://doi.org/10.1038/nn.2552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing