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Zika virus is a mosquito-borne pathogen that is rapidly spreading
across the Americas. Due to associations between Zika virus
infection and a range of fetal maladies1,2, the epidemic trajectory
of this viral infection poses a significant concern for the
nearly 15 million children born in the Americas each year.
Ascertaining the portion of this population that is truly at risk
is an important priority. One recent estimate3 suggested that
5.42 million childbearing women live in areas of the Americas
that are suitable for Zika occurrence. To improve on that esti-
mate, which did not take into account the protective effects of
herd immunity, we developed a new approach that combines
classic results from epidemiological theory with seroprevalence
data and highly spatially resolved data about drivers of trans-
mission to make location-specific projections of epidemic
attack rates. Our results suggest that 1.65 (1.45–2.06) million
childbearing women and 93.4 (81.6–117.1) million people in
total could become infected before the first wave of the epidemic
concludes. Based on current estimates of rates of adverse fetal
outcomes among infected women2,4,5, these results suggest
that tens of thousands of pregnancies could be negatively
impacted by the first wave of the epidemic. These projections
constitute a revised upper limit of populations at risk in the
current Zika epidemic, and our approach offers a new way to
make rapid assessments of the threat posed by emerging
infectious diseases more generally.

On 1 February 2016, the World Health Organization (WHO)
designated the ongoing Zika virus epidemic in the Americas as a
Public Health Emergency of International Concern (PHEIC),
defined as an ‘extraordinary event’ that ‘potentially require[s] a
coordinated international response’6. This declaration acknowledges
the high potential for Zika to establish across the Americas given
that its dominant vector, the Aedes aegypti mosquito, is endophilic
and occupies an exceptionally broad geographical range7. Concern
underlying this rareWHOdeclaration also stems from an association
between Zika virus infection in pregnant women and a range of
adverse fetal outcomes2, most notably congenital microcephaly1.
As of 30 June 2016, there were 1,674 confirmed cases of micro-
cephaly associated with Zika virus infection in five countries8, and
there is widespread concern that these numbers could increase
further as the virus continues to spread across the Americas9.

A number of uncertainties surround the future of the Zika
epidemic in the Americas, particularly questions about how many
women may be at risk of having children with congenital micro-
cephaly and other adverse outcomes associated with Zika virus
infection10. Of women who become infected with Zika virus
during a vulnerable stage of their pregnancy, evidence is emerging
that 1–13% may go on to develop congenital microcephaly2,4,5.

However, the number of women who become infected with Zika
virus during that timeframe is difficult to ascertain. One recent
study3 estimated that 5.42 million births occurred in 2015 in
regions of the Americas with ‘suitability’ for Zika ‘occurrence’.
Such estimates come with many caveats though, as they rely on a
relatively limited number of reported cases and apply a method
based on equilibrium assumptions to a situation involving active
range expansion11. Most importantly, the estimate of 5.42 million
births3 reflects the total population within a demarcated area and
does not take into account that large fractions of the populations
in those areas may remain uninfected due to herd immunity
generated over the course of the first wave of the epidemic12,13.

To quantify the potential magnitude of the ongoing Zika epi-
demic in terms of people who realistically might become infected,
we formulated and applied a method for projecting location-specific
epidemic attack rates on highly spatially resolved human demo-
graphic projections14. The central concept behind our approach is
that of the ‘first-wave’ epidemic. Zika and other mosquito-borne
viruses have been known to exhibit explosive outbreaks, infecting
as much as 75% of a population in a single year15. Classical epide-
miological theory predicts that some proportion of a population
will remain uninfected during an epidemic, because herd immunity
eventually causes the epidemic to burn out12. A related prediction of
this theory is that the proportion infected before epidemic burnout
(that is, the epidemic attack rate) has a one-to-one relationship with
the basic reproduction number, R0 (ref. 13). The latter quantity has a
well-known mechanistic formulation for mosquito-borne pathogens16

that accommodates the effects of environmental drivers on
transmission17,18. For example, the incubation periods of dengue
viruses in the Ae. aegypti mosquitoes that transmit Zika virus
have an empirically derived relationship with temperature18,
which can in turn be used to inform calculations of R0. Together
with similar relationships for other transmission parameters, it is
possible to characterize R0, a fundamental measure of transmission
potential, as a function of local environmental conditions.

We leveraged these classic results from epidemiological theory to
first perform highly spatially resolved calculations of R0 and then to
translate those calculations into location-specific projections of first-
wave epidemic attack rates (Fig. 1). Because Zika-specific values of
transmission parameters are largely unknown at present but may
be well approximated by dengue-specific values19, we used some
parameter values for dengue virus in our R0 calculations. We also
calibrated our attack rate projections to match empirically estimated
attack rates from 12 chikungunya epidemics and one Zika epidemic
in naive populations (Supplementary Table 1). This step afforded us
the flexibility to enhance the realism of the model with respect to
firmly established but poorly quantified associations between
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human–mosquito contact and economic prosperity20. In doing so,
one departure from the classic relationship between R0 and attack
rate that we made was to rescale R0 by an exponent α∈ (0, 1] to
allow for better correspondence with observed attack rates.
Although there is no theoretical justification for this or any other
particular scaling relationship, it is consistent with theoretical
expectations21 that attack rates should be lower in populations
with equal R0 values but more heterogeneous contact patterns,
which are typical for transmission by Ae. aegypti22. To provide a
point of reference for our model-based approach, we also fitted a
statistical description of the 13 seroprevalence estimates as a func-
tion of the environmental drivers that we considered. For both
approaches, we applied their respective location-specific attack
rate projections to demographic projections on a 5 km × 5 km
grid across Latin America and the Caribbean to obtain the expected
numbers of infections in the overall population and among child-
bearing women in particular (Fig. 2a). All such calculations were
performed for 1,000 Monte Carlo samples of model parameters.

In total, our median projection suggests that as many as 93.4
(range: 81.6–117.1) million people in Latin America and the
Caribbean could become infected during the first wave of the epi-
demic (Table 1). To place this number into context, we refer to an
estimate23 that 53.8 (40.0–71.8) million dengue infections occurred
in this region in 2010 alone. Our projections of nearly double this
number for Zika are not surprising, given that there is extensive
immunity to dengue but not Zika in this region and given that it
would probably take longer than a year for the first wave of the epi-
demic to conclude in all locations within this region. At the country
level, we project that Brazil will have the largest total number of
infections by more than double that of any other country, due to
a combination of its size and suitability for transmission. Island
countries in the Caribbean are projected to experience the highest
nationally averaged attack rates, with seven of the highest ten
values projected for countries including Aruba, Haiti and Cuba.
This projection is consistent with a frequent history of arbovirus

outbreaks on islands24 and may be due to the uniformity of environ-
mental conditions on the portions of islands where people tend to
live. In more heterogeneous regions, the 5 km × 5 km spatial
resolution of our maps allows for nuanced projections for areas of
interest to local stakeholders (Fig. 2b,c). To facilitate the use of
these local projections, we have made 5 km × 5 km minimum,
median and maximum projections of attack rates, total infections
and infections among childbearing women publically available online
(http://github.com/TAlexPerkins/Zika_nmicrobiol_2016).

Among childbearing women, our median projection suggests
that there could be as many as 1.65 (range: 1.45–2.06) million infec-
tions in Latin America and the Caribbean before the first wave of the
epidemic concludes (Table 1). Assuming that birth rates are tem-
porally constant, our projections are robust to uncertainty about
the timing of local epidemics and the timeframe of the first wave
of the epidemic, because they are based on cumulative proportions
infected. These projections can also be used to postulate numbers at
risk of microcephaly by multiplying them by the fraction of a year in
which a pregnant woman is susceptible to developing microcephaly
(for example, multiply by 1/4 in the case of first-trimester suscepti-
bility). We also note that there were some discrepancies in our pro-
jections in terms of the rank order of countries experiencing the
most infections among childbearing women versus the population
as a whole. In particular, Cuba was fifth in terms of projected infec-
tions in the overall population but twelfth in terms of infections
among childbearing women due to its low birth rate compared to
other countries in the Americas25. Such discrepancies are also
likely to exist subnationally26, and their elucidation should be a
priority for future work.

By accounting for uncertainty distributions for each of the key
drivers of our model (Fig. 3a–e), we found that uncertainty distri-
butions for infections across the region as a whole and by country
were often multimodal (Fig. 3f–o) due to uncertainty in the shape
of the relationship between mosquito–human contact and the
local economic index that we considered (Fig. 3d). Summing our
projections across Latin America and the Caribbean revealed vari-
ation that was modest, in the sense that none of our 1,000 Monte
Carlo samples resulted in fewer than 81 million infections overall
and 1.4 million among childbearing women (Fig. 3f,k). There are
many reasons that even these numbers could be overestimates
though. Our projections are conditioned on a local epidemic
taking place in each 5 km × 5 km grid cell in the region, which is
unlikely to happen given dispersal limitation, stochastic fadeout,
geographic mismatches in seasonality and other factors. Therefore,
it is most appropriate to interpret our projections as either a
plausible worst-case scenario or an expectation of local epidemic
size conditional on there being a local epidemic in the first place.

Although our approach was very much rooted in mechanistic
models from epidemiological theory, two critical steps in our
method involved fitting curves to describe theoretically motivated
but heretofore unknown relationships: an association between
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Figure 1 | Model-based projections of location-specific epidemic attack
rates. Values shown in each 5 km × 5 km grid cell indicate the median of
1,000 values for that grid cell drawn from independent Monte Carlo
samples of model parameters.

Table 1 | Country-level totals of median location-specific
projections of Zika virus infections in the first-wave epidemic.

Country Total (×106) Births (×103)
Brazil 37.4 (30.6–49.2) 579 (473–755)
Mexico 14.9 (12.8–17.5) 263 (226–310)
Venezuela 7.4 (6.6–8.2) 144 (130–162)
Colombia 6.7 (6.0–8.1) 124 (110–153)
Cuba 3.7 (3.3–4.1) 33 (30–37)
Haiti 2.9 (2.5–4.5) 73 (63–121)
Argentina 2.7 (1.6–6.6) 44 (27–108)
Dom. Rep. 2.6 (2.4–2.8) 61 (56–68)
Others 15.6 (13.3–20.8) 336 (285–453)
Total 93.4 (81.6–117.1) 1,650 (1,449–2,062)
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mosquito–human contact and economic prosperity (Fig. 3d) and a
scaling relationship between R0 and attack rates (Fig. 3e). Allowing
these relationships to be informed by local seroprevalence estimates
(Supplementary Table 1) left open the question of the extent to
which our projections were informed by the mechanistic assump-
tions of the model versus statistical fits to the seroprevalence esti-
mates that we used. On the one hand, an alternative statistical
approach accounted for much more variation in seroprevalence esti-
mates (R2 = 0.89) than did the model-based approach (R2 = 0.32).
On the other hand, the statistical approach offered a dichotomous
set of projections about numbers of infections outside the context
of the data to which it was fitted: either everyone will become
infected or very few people will (Fig. 4). Relationships between
attack rates and predictor variables inferred by the statistical
approach (Fig. 5d–i) were also implausible: a narrow temperature
range in which attack rates increase sharply towards 100%
(Fig. 5d–h) and a reversal of economic effects whereby wealthy
populations experience higher attack rates than poor populations
when mosquito occurrence probabilities are high (Fig. 5f,i). By
contrast, the model-based approach yielded more moderate attack
rate projections overall (Figs 3f versus 4a) in which temperature,
economic prosperity and mosquito occurrence probability all had
plausible relationships with attack rates (Fig. 5a–c).

In conclusion, our model-based approach offers a unique way to
leverage a variety of spatially detailed data products7,14,27,28 to make
a priori projections of attack rates and infections that could be
experienced in the first wave of the ongoing Zika epidemic.
Projections such as these have an important role to play in the
early stages of an epidemic, when planning for surveillance and out-
break response is actively under way both internationally and
locally9. At the same time, it is important for consumers of this

information to be aware of uncertainties in these and other projec-
tions, which often exceed the amount of uncertainty that can be
identified a priori29. Similarly, following up on these projections
in the aftermath of the epidemic—by comparing against projections
made with alternative models and additional serological surveys30—
will provide an exceptional opportunity to enhance capabilities to
anticipate the severity of future epidemic threats.

Methods
Data sources and processing. Human demography. To estimate the annual
numbers of pregnancies per 1 km × 1 km grid cell in 2015, methods developed
by the WorldPop project (www.worldpop.org)25,31 were adapted for the Americas
region. High-resolution estimates of population counts per 100 m × 100 m grid cell
for 2015 were recently constructed for Latin American, Asian and African
countries14,32. With consistent subnational data on sex and age structures, as well as
subnational age-specific fertility rate data across the Americas currently unavailable
for fully replicating the approaches of Tatem and colleagues31, national-level
adjustments were made to construct pregnancy and birth counts. Data on estimated
total numbers of births33 and pregnancies31 occurring annually in 2012 were assembled
for all Latin American study countries, as well as births in 2015 (ref. 33). As no 2015
pregnancy estimates existed at the time of writing, the ratios of births to pregnancies
for each country in the Americas were calculated using 2011 and 2012 estimates,
and these were then applied to the 2015 birth numbers to obtain 2015 estimates of
annual pregnancy numbers per country. This made the assumption that per-country
births-to-pregnancies ratios remained the same in 2015 as they were in 2011 and
2012. The 100 m × 100 m gridded population totals were aggregated to 1 km× 1 km
spatial resolution and the per-country totals were linearly adjusted to match the
2015 pregnancy estimates.

Temperature. We used interpolated meteorological station temperature data from the
1950–2000 period at 5 km× 5 km spatial resolution, processed to create climatological
monthly averages that represent ‘typical’ conditions (www.worldclim.org)27.

Ae. aegypti occurrence probability. To predict the likely distribution of Ae. aegypti
mosquitoes, Kraemer et al.7 generated high-resolution occurrence probability

a b
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Figure 2 | Model-based projections of location-specific expected numbers of Zika virus infections among childbearing women. Values shown in each
5 km × 5 km represent projections of median epidemic attack rates from Fig. 1 multiplied by demographic projections14. a, Projections across Latin America
and the Caribbean as a whole. b,c, More detailed projections for two areas: Cali, Colombia (b) and Recife, Brazil (c).
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surfaces based on a species distribution modelling approach11. More specifically,
a boosted regression tree model was applied using a comprehensive set of known
occurrences (n = 19,930) of Ae. aegypti and a set of environmental predictors known
to influence the distribution of the species7. Covariates included a temperature
suitability index17, contemporary mean and range maps of the Enhanced Vegetation
Index and precipitation34, and an urbanization index from the Global Rural Urban
Mapping Project. We used a set of 100 spatial layers sampled from the posterior
distribution estimated by Kraemer et al.7

Economic index. To account for socio-economic differences among populations
residing in different regions, we used one-degree-resolution gridded estimates of
purchasing power parity (PPP) in US$ from 2005 adjusted for inflation (G-Econ)28.
When we encountered missing values, we imputed values in one of two ways. Grid
cells in small island countries with data missing for the entire country were
uniformly filled with population-adjusted PPP figures obtained from the US CIA
World Factbook35. Missing values in continental grid cells were imputed with the
mean of the surrounding eight grid cell values. Once we obtained a complete PPP
grid layer at one-degree resolution, we resampled the layer to a resolution of
5 km × 5 km to match the resolution of gridded layers for human demography,
temperature and Ae. aegypti occurrence probability.

Seroprevalence estimates. To calibrate our model, we identified published estimates
of seroprevlance that were relevant to the context of our study (Supplementary
Table 1). Specifically, we sought estimates of seroprevalence to either Zika or
chikungunya viruses in populations that were presumably naive before an outbreak.
Thus, we excluded some seroprevalence estimates that were obtained from endemic
populations. We also excluded estimates from small islands—namely, Reunion and
Grande Comore—for which it was clear that gridded temperature data were
unrealistically low due to steep elevational gradients and other features of island
geography. Although the focus of our analysis was on Latin America and the
Caribbean, we were not able to exclude locations on the basis of location given that
only 2 of 13 came from the focal region. Appropriately, however, a number of the

seroprevalence estimates we obtained pertained specifically to pregnant women,
although there did not appear to be differences in the seroprevalence of pregnant
women and the population at large, at least in the context of a naive population
following an outbreak36.

Calculation of derived quantities. Mosquito abundance. Occurrence probabilities
can be translated into proxies for abundance provided that an assumption is
made about how abundance is distributed as a random variable37. Assuming that
mosquito abundance is distributed as a Poisson random variable, the probability
that there is at least one mosquito present in a given location is 1 – exp(–λ),
where λ is the expected abundance of mosquitoes. Inverting this relationship,
we obtained an estimate λ = –ln(1 – occurrence probability) of expected mosquito
abundance under the Poisson model and used this as a proxy for mosquito
abundance in our calculations.

Mosquito–human ratios. The estimates of mosquito occurrence probability that
we used incorporated a number of environmental variables7. They did not
account for factors that modulate contact between mosquitoes and humans,
however. Due in part to economic differences, factors such as air conditioning
and piped water can drastically limit mosquito–human contact and virus
transmission, even when mosquitoes are abundant20. We accounted for the effect
of economic differences between locations by multiplying our proxy for
mosquito abundance λ by a multiplication factor, which we specified as a
function of the aforementioned economic index. We specified the relationship
between the economic index and the multiplication factor by using a shape
constrained additive model (SCAM38). This allowed for flexibility in the shape of
this relationship but constrained it such that the multiplication factor (and thus,
presumed mosquito–human contact) could only have a monotonically
decreasing relationship with increasing values of the economic index. The
specific shape of this relationship was determined by fitting it to values of the
multiplication factors that would be necessary for modelled attack rates to
perfectly match published seroprevalence estimates.
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Basic reproduction number R0. We calculated the basic reproduction number R0
according to its classic Ross–Macdonald formulation and as a function of
temperature T,

R0(T) =
mbca2e−μ(T)n(T)

μ(T)r
(1)

with adult mosquito mortality µ and extrinsic incubation period n specified as
functions of temperature. Because temperature values were available for each
location on a monthly basis, we computed monthly values of R0 for each location
and then used the mean of the highest six monthly values of R0 as a singular estimate
of R0 for each location. This approach was broadly consistent with the way in which a
temperature suitability index was used to inform mosquito occurrence probabilities
by Kraemer and co-authors7.

For mosquito mortality, we used the temperature- and age-dependent model of
Brady and colleagues39, to which we added an additional force of extrinsic mortality
(0.025 d−1) to match an overall daily mortality value of 0.115 estimated in a mark–
release–recapture experiment carried out under temperatures ranging from 20 to
34 °C (ref. 40). We then computed the mean of the age- and temperature-dependent

lifespan distribution as a function of temperature to inform μ(T). For the
relationship between temperature and mean duration of the extrinsic incubation
period, we used the temperature-dependent exponential rate estimated by Chan and
Johansson18. The ratio of mosquitoes to humans, m, was quantified using a
combination of occurrence probabilities and the gross cell product economic index,
as described in the previous two sections. Parameters that did not depend on
temperature were set at the following values according to published estimates for
Ae. aegypti and dengue virus: mosquito-to-human transmission probability, b = 0.4
(ref. 41); human-to-mosquito transmission probability times number of days of
human infectiousness, c/r = 3.5 (ref. 42); mosquito biting rate, a = 0.67 (ref. 43).
Although there is uncertainty around these parameter values, any such uncertainty
was effectively subsumed by fitting m to seroprevalence data given that bca2/r
entered R0 as a constant.

Attack rates under a model-based formulation. Under a susceptible–infected–
recovered (SIR) transmission model, there is a one-to-one relationship between R0
and final epidemic size, which is equivalent to the attack rate over the course of an
epidemic13. Intuitively, the final epidemic size is reached once herd immunity is
sufficient to limit contacts between infectious and susceptible individuals to the
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extent necessary to reduce the pathogen’s force of infection to zero. There is no
explicit solution for final epidemic size as a function of model parameters, but it can
be calculated numerically by obtaining an implicit solution of S∞ = e−R0 (1−S∞ ) for
S∞, which is the proportion remaining susceptible after the epidemic has burned
out13. Under the assumptions of the SIR model, the attack rate over the course of an
epidemic is AR = 1 – S∞.

To apply this theoretical insight to Zika or other mosquito-borne pathogens,
several limiting assumptions of the SIR model must first be reconciled. One such
assumption is that individuals become infectious immediately upon becoming
infected and remain infectious for an exponentially distributed period of time44;
mosquito-borne pathogens such as Zika virus are instead characterized by a distinct
lag between human and mosquito infection45. Despite this discrepancy between
assumptions of the SIR model and the reality of many pathogen systems,
mathematical analyses46 have shown that final epidemic size is insensitive to details
about the shape of the distribution that characterizes the time period between
successive cases (that is, the generation interval).

Another limiting assumption of the SIR model is that of homogeneous
encounters between people and mosquitoes44, which are understood to be extensive
for mosquito-borne diseases22. Mathematical analyses21 in this case show that a
seemingly infinite complexity of relationships between R0 and final epidemic size are
possible in a heterogeneous system. As a general rule, however, final epidemic size in
a system with contact heterogeneity and proportional mixing is expected to be
strictly less than the final epidemic size in an otherwise equivalent system with
homogeneous contacts21. How the ratio of these final epidemic sizes scales as a
function of R0 depends entirely on the details of a given system and would therefore
be extremely difficult to generalize without copious data on mosquito–human
contact and further investigation, which is beyond the scope of our study.

To capture the potentially very strong effects of heterogeneity in reducing
final epidemic size in populations subject to Zika epidemics, we scaled the
final epidemic size by substituting Rα

0 for R0 in the SIR-based final epidemic
size formula given some constant α ∈ (0, 1]. Although there is no theoretical
justification for this or any other choice of how to scale R0 and AR in the presence
of contact heterogeneity, the choice we made has the following desirable
properties: (1) it implies that AR→ 1 as R0→∞; (2) it leads to the function
AR(R0) having a more gradual slope and thereby allows for intermediate attack
rates to be more common than they would be otherwise; (3) it preserves the
property that AR = 0 for R0 < 1. At the same time, this and possible alternative
formulations are limited by a general lack of understanding about the
relationship between R0 and AR in heterogeneous systems, relationships that
may furthermore be heterogeneous themselves across different areas47.

To estimate α, we performed the following procedure for candidate values of α
between 0.01 and 1 in increments of 0.01: (1) calculate R0 according to equation (1)
and assume m = λ for each of the 13 sites from which seroprevalence estimates
were derived; (2) use those R0 values to calculate AR values for each of those sites
based on the classic SIR formulation; (3) calculate what multiplication factor of R0
would be necessary for AR to match the empirical seroprevalence estimate; (4) fit a
SCAM model of the economic index to the multiplication factors; and (5) use the
fitted SCAM values to recalculate R0 and then AR for each site. Next, we calculated
the sum of squares between the final predicted AR values associated with each α and
the empirical seroprevalence estimates and we then selected the value of α that
minimized the sum of squares. Supplementary Fig. 1 illustrates this process given
mean estimates of λ from Ae. aegypti occurrence probabilities, μ(T) and n(T).

Attack rates under a statistical formulation. As an alternative to our model-based
characterization of attack rates, we also considered a purely statistical approach that
modelled probit-transformed seroprevalence observations as functions of averaged
monthly temperatures, Ae. aegypti occurrence probabilities and the economic index.
We considered all combinations of linear, quadratic and pairwise interaction terms
of these variables, comparing them on the basis of the Akaike Information Criterion
using the lm and step functions in R (ref. 48). Although additional functional forms
would have been of interest, this suite of models was as complex as the limited set of
13 seroprevalence observations would support.

Quantifying uncertainty around attack rate projections. To quantify uncertainty
associated with our projections, we generated 1,000 Monte Carlo samples from the
uncertainty distributions of each model parameter as described in each of the
references7,17,18 in which those parameters were originally described. For μ(T) and
n(T), we took random draws of their parameters consistent with published
descriptions of uncertainty in the parameters of those functions from their original
sources17,18. For Ae. aegypti occurrence probabilities, we drew randomly with
replacement from 100 sample layers from the posterior distribution7. For the
relationship involving the economic index and the R0 scaling factor α, we used
best-fit SCAM models and α values corresponding to each set of random draws
of the parameters of μ(T), n(T) and λ from the Ae. aegypti layers. For each of the
1,000 Monte Carlo samples of the statistical model, we performed resampling with
replacement among the 13 seroprevalence values, performed the same model fitting
and model selection procedure described in the previous section, and took a
multivariate normal random sample of the parameter values of the best-fit model
based on the model’s best-fit parameters and variance–covariance matrix.

Projecting attack rates and numbers of infections. To obtain estimates of the
numbers of infections in total and among childbearing women for the model-based
and statistical approaches, we multiplied their respective attack rate projections
applied to 5 km × 5 km grids across Latin America and the Caribbean by human
demographic layers for total population and births in 2015. For both the model-based
and statistical approaches, we performed these calculations and summed at the
country level once for each of the 1,000Monte Carlo samples that we produced. High-
resolution spatial projections of attack rates and numbers of infected childbearing
women under the model-based approach are presented in Supplementary Figs 2–10.
Most projections based on the statistical approach resulted in attack rates of 100% in
nearly all locations throughout Latin America and the Caribbean.

Code availability. Code in the R language for reproducing all analyses is available at
http://github.com/TAlexPerkins/Zika_nmicrobiol_2016.
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