Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles

Abstract

The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand–regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 β-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the LIScan method.
Figure 2: Effect of FlAsH on β-lactamase activity in TEM-1 variants.
Figure 3: In vivo effects of FlAsH on TEM-1 tetracysteine mutants expressed in HEK293T cells.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Nature 431, 931–945 (2004).

  2. Alaimo, P.J., Shogren-Knaak, M.A. & Shokat, K.M. Curr. Opin. Chem. Biol. 5, 360–367 (2001).

    Article  CAS  Google Scholar 

  3. Bishop, A.C. et al. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  4. Stankunas, K. et al. Mol. Cell 12, 1615–1624 (2003).

    Article  CAS  Google Scholar 

  5. Buskirk, A.R., Ong, Y.C., Gartner, Z.J. & Liu, D.R. Proc. Natl. Acad. Sci. USA 101, 10505–10510 (2004).

    Article  CAS  Google Scholar 

  6. Hahn, M.E. & Muir, T.W. Trends Biochem. Sci. 30, 26–34 (2005).

    Article  CAS  Google Scholar 

  7. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  8. Adams, S.R. et al. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  Google Scholar 

  9. Hallet, B., Sherratt, D.J. & Hayes, F. Nucleic Acids Res. 25, 1866–1867 (1997).

    Article  CAS  Google Scholar 

  10. Matagne, A., Lamotte-Brasseur, J. & Frere, J.M. Biochem. J. 330, 581–598 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of our group for help and support. We also thank M. Marmor, D. Reichmann, Y. Shaul, E. Kario and D. Chuderland for help with methods; G. Schreiber, R. Seger, A. Navon, E. Bayer and S. Lev for advice and discussions. This work was supported by the J&R Center for Scientific Research, the Willner Center for Vascular Biology and La Fondation Raphael et Regina Levy. M.L. is the incumbent of the Harold L. Korda Professorial Chair in Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Liscovitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Insertional mutagenesis of TEM-1 β-lactamase with the 4C motif. (PDF 6602 kb)

Supplementary Fig. 2

PCR and restriction analysis of 4C insertions in TEM-1 mutants. (PDF 310 kb)

Supplementary Fig. 3

Expression, purification and FlAsH binding of TEM-1 4C mutants. (PDF 79 kb)

Supplementary Fig. 4

Molecular models of FlAsH-sensitive TEM-1 mutant 4C-215. (PDF 1360 kb)

Supplementary Fig. 5

Possible modes of interaction of FlAsH with the CCPGCC peptide. (PDF 1252 kb)

Supplementary Table 1

Generation of TEM-1 4C-mutants and the primers used in inverse PCR insertional mutagenesis. (PDF 59 kb)

Supplementary Methods (PDF 115 kb)

Supplementary Discussion (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erster, O., Eisenstein, M. & Liscovitch, M. Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles. Nat Methods 4, 393–395 (2007). https://doi.org/10.1038/nmeth1046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing