Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoselective probes for metabolite enrichment and profiling

Abstract

Chemical probes that target classes of proteins based on shared functional properties have emerged as powerful tools for proteomics. The metabolome rivals, if not surpasses, the proteome in terms of size and complexity, suggesting that efforts to profile metabolites would also benefit from targeted technologies. Here we apply the principle of chemoselective probes to the metabolome, creating a general strategy to tag, enrich and profile large classes of small molecules from biological systems. Key to success was incorporation of a protease-cleavage step to release captured metabolites in a format compatible with liquid chromatography–mass spectrometry (LC-MS) analysis. This technology, termed metabolite enrichment by tagging and proteolytic release (METPR), is applicable to small molecules of any physicochemical class, including polar, labile and low-mass (<100 Da) compounds. We applied METPR to profile changes in the thiol metabolome of human cancer cells treated with the antioxidant N-acetyl-L-cysteine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The METPR technology.
Figure 2: Evaluating the performance of METPR.
Figure 3: METPR analysis of metabolites in the human breast cancer line MDA-MB-231.
Figure 4: Comparison of tandem MS spectra of tagged metabolites in METPR experiments.
Figure 5: METPR analysis of breast cancer cells treated with the antioxidant N-acetyl-L-cysteine.

Similar content being viewed by others

References

  1. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Patterson, S.D. & Aebersold, R. Proteomics: the first decade and beyond. Nat. Genet. 33, 311–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Saghatelian, A. & Cravatt, B.F. Global strategies to integrate the proteome and metabolome. Curr. Opin. Chem. Biol. 9, 62–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kell, D.B. & Westerhoff, H.V. Towards a rationale approach to the optimization of flux in microbial biotransformations. Trends Biotechnol. 4, 137–142 (1986).

    Article  CAS  Google Scholar 

  6. Fell, D.A. Enzymes, metabolites and fluxes. J. Exp. Bot. 56, 267–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wenk, M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Chiang, K.P., Niessen, S., Saghatelian, A. & Cravatt, B.F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, H., Yan, W. & Aebersold, R. Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr. Opin. Chem. Biol. 8, 66–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Daykin, C.A., Foxall, P.J.D., Connor, S.C., Lindon, J.C. & Nicholson, J.K. The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear magnetic resonance spectroscopy. Anal. Biochem. 304, 220–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Want, E.J. et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78, 743–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chowdhury, S.M., Munske, G.R., Siems, W.F. & Bruce, J.E. A new maleimide-bound acid-cleavable solid-support reagent for profiling phosphorylation. Rapid Commun. Mass Spectrom. 19, 899–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tumelty, D., Cao, K. & Holmes, C.P. Traceless solid-phase synthesis of substituted benzimidazoles via a base-cleavable linker. Org. Lett. 3, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Williams, S.J., Hekmat, O. & Withers, S.G. Synthesis and testing of mechanism-based protein-profiling probes for retaining endo-glycosidases. ChemBioChem 7, 116–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Roessner-Tunali, U. et al. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133, 84–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kell, D.B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Yalcin, T. & Harrison, A.G. Ion chemistry of protonated lysine derivatives. J. Mass Spectrom. 31, 1237–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Menon, S.G., Coleman, M.C., Walsh, S.A., Spitz, D.R. & Goswami, P.C. Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid. Redox Signal. 7, 711–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Shibanuma, M., Kuroki, T. & Nose, K. Induction of DNA-replication and expression of proto-oncogene c-myc and c-fos in quiescent Balb/3T3 cells by xanthine-xanthine oxidase. Oncogene 3, 17–21 (1988).

    CAS  Google Scholar 

  26. Kim, K.Y., Rhim, T., Choi, I. & Kim, S.S. N-acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J. Biol. Chem. 276, 40591–40598 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Menon, S.G. et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res. 63, 2109–2117 (2003).

    CAS  PubMed  Google Scholar 

  28. Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A. 1125, 76–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Breitling, R., Pitt, A.R. & Barrett, M.P. Precision mapping of the metabolome. Trends Biotechnol. 24, 543–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hemstrom, P. & Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 29, 1784–1821 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H.P. Benton and A. Nordström for assistance with Q-TOF experiments. We also thank G. Simon for help in generating figures, and members of the Cravatt laboratory for helpful discussion and critical review of the manuscript. This work was supported by the American Cancer Society (PF-06-009-01-CDD, to E.E.C.), the National Institutes of Health (CA087660) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Synthesis of reactive group-functionalized resins. (PDF 124 kb)

Supplementary Fig. 2

Protein precipitation as assessed by SDS-PAGE (10% SDS) visualized with silver stain. (PDF 129 kb)

Supplementary Fig. 3

Profiling metabolites with varied physicochemical properties by METPR. (PDF 154 kb)

Supplementary Fig. 4

METPR analysis of small molecule standards in human urine. (PDF 103 kb)

Supplementary Fig. 5

MS2 analysis of tagged small-molecules generated in METPR experiments. (PDF 191 kb)

Supplementary Table 1

Table of detected masses from NAC treatment. (PDF 43 kb)

Supplementary Methods (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, E., Cravatt, B. Chemoselective probes for metabolite enrichment and profiling. Nat Methods 4, 429–435 (2007). https://doi.org/10.1038/nmeth1038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing