Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells

Abstract

Inorganic nanocrystals are attractive materials for solar-cell applications. However, the performance of such devices is often limited by an insufficient alignment of energy levels in the nanocrystals. Here, we report that by attaching two different molecules to a single quantum dot or nanocrystal one can induce electric fields large enough to significantly alter the electronic and optoelectronic properties of the quantum dot. This electric field is created within the nanocrystals owing to a mixture of amine- and thiol-anchor-group ligands. Examining the steady state as well as temporal evolution of the optical properties and the nuclear magnetic resonances of the nanocrystals we found that the first excitonic peak shifts as a function of the capping-layer composition. We also demonstrate that the use of a mixed-ligand-induced electric field markedly enhances the charge generation efficiency in layer-by-layer CdSe-nanocrystal-based solar cells, thus improving the overall cell efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the ligands used in this work.
Figure 2: The effect of added MTP ligands on the absorption spectrum of HDA-capped CdSe.
Figure 3: Gradual adsorption of MTP ligands to HDA-capped CdSe nanocrystals.
Figure 4: Addition of excess MTP ligand to PMA-saturated nanocrystals.
Figure 5: Addition of PMA ligands to MTP-capped CdSe nanocrystals.
Figure 6: CdSe-nanocrystal-based solar cells.

Similar content being viewed by others

References

  1. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    Article  CAS  Google Scholar 

  2. Tessler, N., Medvedev, V., Kazes, M., Kan, S. H. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    Article  Google Scholar 

  3. Solomeshch, O. et al. Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. J. Appl. Phys. 98, 074310 (2005).

    Article  Google Scholar 

  4. Leatherdale, C. A. et al. Photoconductivity in CdSe quantum dot solids. Phys. Rev. B 62, 2669–2680 (2000).

    Article  CAS  Google Scholar 

  5. Bullen, C. & Mulvaney, P. The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22, 3007–3013 (2006).

    Article  CAS  Google Scholar 

  6. Ginger, D. S. & Greenham, N. C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 87, 1361–1368 (2000).

    Article  CAS  Google Scholar 

  7. Soreni-Harari, M. et al. Tuning energetic levels in nanocrystal quantum dots through surface manipulations. Nano Lett. 8, 678–684 (2008).

    Article  CAS  Google Scholar 

  8. Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. & Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211 (2001).

    Article  CAS  Google Scholar 

  9. Munro, A. M., Zacher, B., Graham, A. & Armstrong, N. R. Photoemission spectroscopy of tethered CdSe nanocrystals: Shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand. ACS Appl. Mater. Interfaces 2, 863–869 (2010).

    Article  CAS  Google Scholar 

  10. Shalom, M., Ruhle, S., Hod, I., Yahav, S. & Zaban, A. Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles. J. Am. Chem. Soc. 131, 9876–9877 (2009).

    Article  CAS  Google Scholar 

  11. Donakowski, M. D. et al. A quantitative description of the binding equilibria of para-substituted aniline ligands and CdSe quantum dots. J. Phys. Chem. C 114, 22526–22534 (2010).

    Article  CAS  Google Scholar 

  12. Knowles, K. E., Tice, D. B., McArthur, E. A., Solomon, G. C. & Weiss, E. A. Chemical control of the photoluminescence of CdSe quantum dot-organic complexes with a series of para-substituted aniline ligands. J. Am. Chem. Soc. 132, 1041–1050 (2010).

    Article  CAS  Google Scholar 

  13. Empedocles, S. A. & Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  CAS  Google Scholar 

  14. Rothenberg, E., Kazes, M., Shaviv, E. & Banin, U. Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett. 5, 1581–1586 (2005).

    Article  CAS  Google Scholar 

  15. Kuno, M., Lee, J. K., Dabbousi, B. O., Mikulec, F. V. & Bawendi, M. G. The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. J. Chem. Phys. 106, 9869–9882 (1997).

    Article  CAS  Google Scholar 

  16. Yu, W. W., Qu, L. H., Guo, W. Z. & Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    Article  CAS  Google Scholar 

  17. Munro, A. M., Jen-La Plante, I., Ng, M. S. & Ginger, D. S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 111, 6220–6227 (2007).

    Article  CAS  Google Scholar 

  18. Talapin, D. V., Lee, J. S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  19. Nelson, J. The Physics of Solar Cells (Imperial College Press, 2003).

    Book  Google Scholar 

  20. Gaunt, J. A., Knight, A. E., Windsor, S. A. & Chechik, V. Stability and quantum yield effects of small molecule additives on solutions of semiconductor nanoparticles. J. Colloid Interface Sci. 290, 437–443 (2005).

    Article  CAS  Google Scholar 

  21. Li, R. F. et al. Amine-assisted facetted etching of CdSe nanocrystals. J. Am. Chem. Soc. 127, 2524–2532 (2005).

    Article  CAS  Google Scholar 

  22. Lovingood, D. D., Achey, R., Paravastu, A. K. & Strouse, G. F. Size- and site-dependent reconstruction in CdSe QDs evidenced by 77Se{1H} CP-MAS NMR spectroscopy. J. Am. Chem. Soc. 132, 3344–3354 (2010).

    Article  CAS  Google Scholar 

  23. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to U. Banin and T. Mokari for discussions. We acknowledge partial support from the Ollendorff Minerva Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper.

Corresponding author

Correspondence to Nir Tessler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaacobi-Gross, N., Soreni-Harari, M., Zimin, M. et al. Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nature Mater 10, 974–979 (2011). https://doi.org/10.1038/nmat3133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing