Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunnelling spectra of individual magnetic endofullerene molecules

Abstract

The manipulation of single magnetic molecules may enable new strategies for high-density information storage and quantum-state control. However, progress in these areas depends on developing techniques for addressing individual molecules and controlling their spin. Here, we report success in making electrical contact to individual magnetic N@C60 molecules and measuring spin excitations in their electron tunnelling spectra. We verify that the molecules remain magnetic by observing a transition as a function of magnetic field that changes the spin quantum number and also the existence of non-equilibrium tunnelling originating from low-energy excited states. From the tunnelling spectra, we identify the charge and spin states of the molecule. The measured spectra can be reproduced theoretically by accounting for the exchange interaction between the nitrogen spin and electron(s) on the C60 cage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device geometry and the spin states of N@C60.
Figure 2: Colour-scale plots of differential conductance (dI/dV) for N@C60 and C60 SMTs.
Figure 3: Colour-scale plots of differential conductance (dI/dV) as a function of bias voltage and gate voltage at zero applied field (B=0 T).
Figure 4: Numerical calculation of the tunnelling spectrum for N@C60, with parameters chosen to mimic the data for device 1.

Similar content being viewed by others

References

  1. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  CAS  Google Scholar 

  2. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  3. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  4. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  CAS  Google Scholar 

  5. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  6. Liang, W. J., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  7. Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, 032322 (2002).

    Article  Google Scholar 

  8. Morton, J. J. L. et al. Bang-bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2, 40–43 (2006).

    Article  CAS  Google Scholar 

  9. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    Article  CAS  Google Scholar 

  10. Lu, X. H., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Spatially mapping the spectral density of a single C60 molecule. Phys. Rev. Lett. 90, 096802 (2003).

    Article  Google Scholar 

  11. Yu, L. H. & Natelson, D. The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004).

    Article  CAS  Google Scholar 

  12. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  CAS  Google Scholar 

  13. Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically-adjustable and electrically-gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  CAS  Google Scholar 

  14. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in single-molecule quantum dot. Nature 453, 633–637 (2008).

    Article  CAS  Google Scholar 

  15. Waiblinger, M. et al. Thermal stability of the endohedral fullerenes N@C60, N@C70, and P@C60 . Phys. Rev. B 64, 159901(E) (2001).

    Article  Google Scholar 

  16. Trouwborst, M. L., van der Molen, S. J. & van Wees, B. J. The role of Joule heating in the formation of nanogaps by electromigration. J. Appl. Phys. 99, 114316 (2006).

    Article  Google Scholar 

  17. Taychatanapat, T., Bolotin, K. I., Kuemmeth, F. & Ralph, D. C. Imaging electromigration during the formation of break junctions. Nano Lett. 7, 652–656 (2007).

    Article  CAS  Google Scholar 

  18. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  19. Jo, M.-H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006).

    Article  CAS  Google Scholar 

  20. Elste, F. & Timm, C. Theory for transport through a single magnetic molecule: Endohedral N@C60 . Phys. Rev. B 71, 155403 (2005).

    Article  Google Scholar 

  21. Pasupathy, A. N. et al. Vibration-assisted electron tunneling in C140 single-molecule transistors. Nano Lett. 5, 203–207 (2005).

    Article  CAS  Google Scholar 

  22. Guéron, S., Deshmukh, M. M., Myers, E. B. & Ralph, D. C. Tunneling via individual electronic states in ferromagnetic nanoparticles. Phys. Rev. Lett. 83, 4148–4151 (1999).

    Article  Google Scholar 

  23. Timm, C. Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field. Phys. Rev. B 76, 014421 (2007).

    Article  Google Scholar 

  24. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Article  Google Scholar 

  25. Green, W. H. et al. Electronic structures and geometries of C60 anions via density functional calculations. J. Phys. Chem. 100, 14892–14898 (1996).

    Article  CAS  Google Scholar 

  26. Almeida Murphy, T. et al. Observation of atomlike nitrogen in nitrogen-implanted solid C60 . Phys. Rev. Lett. 77, 1075–1078 (1996).

    Article  CAS  Google Scholar 

  27. Pietzak, B., Weidinger, A., Dinse, K.-P. & Hirsch, A. in Endofullerenes: A New Family of Carbon Clusters (eds Akasaka, T. & Nagase, S.) 13–65 (Kluwer, 2002).

    Book  Google Scholar 

  28. Yang, S. H., Pettiette, C. L., Conceicao, J., Cheshnovsky, O. & Smalley, R. E. UPS of buckminsterfullerene and other large clusters of carbon. Chem. Phys. Lett. 139, 233–238 (1987).

    Article  CAS  Google Scholar 

  29. Pederson, M. R. & Quong, A. A. Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules. Phys. Rev. B 46, 13584–13591 (1992).

    Article  CAS  Google Scholar 

  30. Yannouleas, C. & Landman, U. Stabilized-jellium description of neutral and multiply charged fullerenes Cx±60 . Chem. Phys. Lett. 217, 175–185 (1994).

    Article  CAS  Google Scholar 

  31. Modesti, S., Cerasari, S. & Rudolf, P. Determination of charge states of C60 adsorbed on metal surfaces. Phys. Rev. Lett. 71, 2469–2472 (1993).

    Article  CAS  Google Scholar 

  32. Swami, N., He, H. & Koel, B. E. Polymerization and decomposition of C60 on Pt(111) surfaces. Phys. Rev. B 59, 8283–8291 (1999).

    Article  CAS  Google Scholar 

  33. Udvardi, L. in Electronic Properties of Novel Materials—Molecular Nanostructures (eds Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 187–190 (AIP, 2000).

    Google Scholar 

  34. Deshmukh, M. M. et al. Magnetic anisotropy variations and nonequilibrium tunneling in a cobalt nanoparticle. Phys. Rev. Lett. 87, 226801 (2001).

    Article  CAS  Google Scholar 

  35. Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. & Tarucha, S. Nonequilibrium transport through a vertical quantum dot in the absence of spin-flip energy relaxation. Phys. Rev. Lett. 88, 236802 (2002).

    Article  CAS  Google Scholar 

  36. Harneit, W. et al. Room temperature electrical detection of spin coherence in C60 . Phys. Rev. Lett. 98, 216601 (2007).

    Article  CAS  Google Scholar 

  37. Jakes, P., Dinse, K.-P., Meyer, C., Harneit, W. & Weidinger, A. Purification and optical spectroscopy of N@C60 . Phys. Chem. Chem. Phys. 5, 4080–4083 (2003).

    Article  CAS  Google Scholar 

  38. Koch, J., von Oppen, F., Oreg, Y. & Sela, E. Thermopower of single-molecule devices. Phys. Rev. B 70, 195107 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Döring and O. Bäßler for their work to synthesize and purify the N@C60 and G. R. Hutchison for help with calculations. The research at Cornell was supported by the US NSF (DMR-0520404, DMR-0605742, EEC-0646547, CHE-0403806 and through use of the Cornell Nanofabrication Facility/NNIN). Work in Berlin was supported by the Bundesministerium für Bildung und Forschung under contract no. 03N8709.

Author information

Authors and Affiliations

Authors

Contributions

J.E.G. had the primary role in fabricating the samples, carrying out the measurements and analysing the data, with assistance from E.S.T. and J.J.P. and advice from D.C.R. C.T. carried out the model calculations. M.S. and W.H. led the molecular synthesis, purification and characterization. B.U. and H.D.A. carried out electrochemical characterization. All of the authors contributed to the data analysis and the preparation of the manuscript.

Corresponding author

Correspondence to Daniel C. Ralph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grose, J., Tam, E., Timm, C. et al. Tunnelling spectra of individual magnetic endofullerene molecules. Nature Mater 7, 884–889 (2008). https://doi.org/10.1038/nmat2300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing