Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water-filled single-wall carbon nanotubes as molecular nanovalves

Abstract

It is known that at low temperature, water inside single-wall carbon nanotubes (water–SWNTs) undergoes a structural transition to form tube-like solid structures. The resulting ice NTs are hollow cylinders with diameters comparable to those of typical gas molecules. Hence, the gas-adsorption properties of ice– and water–SWNTs are of interest. Here, we carry out the first systematic investigation into the stability of water–SWNTs in various gas atmospheres below 0.1 MPa by means of electrical resistance, X-ray diffraction, NMR measurements and molecular dynamics calculations. It is found that the resistivity of water–SWNTs exhibits a significant increase in gas atmospheres below a critical temperature Tc, at which a particular type of atmospheric gas molecule enters the SWNTs in an on–off fashion. On the basis of this phenomenon, it is proposed that water–SWNTs can be used to fabricate a new type of molecular nanovalve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of SWNTs, SWNTs with ice NTs and SWNTs with hydrates.
Figure 2: Temperature dependence of resistance.
Figure 3: Temperature (T) dependence of electrical resistance of wet SWNT (sample L) film in various gases.
Figure 4: The XRD patterns of wet SWNTs (sample L), both with and without CH4 at a pressure of 0.1 MPa for several temperatures.
Figure 5: 1H-NMR spectra of CH4 in the dry and wet SWNTs (sample L).
Figure 6: Temperature dependence of the 1H NMR intensity (multiplied by temperature) in the D2O-exposed SWNTs (sample L) in CH4 at a pressure of 0.1 MPa.
Figure 7: Filling–ejecting phenomena for CH4 and Ne.
Figure 8: Valve function of water–SWNTs.

Similar content being viewed by others

References

  1. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–615 (1993).

    Article  CAS  Google Scholar 

  2. Bethune, D.S. et al. Cobalt-catalysed grown carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  CAS  Google Scholar 

  3. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  4. Fan, X. et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 84, 4621 (2000).

    Article  CAS  Google Scholar 

  5. Calbi, M. M., Cole, M. W., Gatica, S. M., Bojan, M. J. & Stan, G. Condensed phases of gases inside nanotube bundles. Rev. Mod. Phys. 73, 857–865 (2001).

    Article  CAS  Google Scholar 

  6. Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

    Article  CAS  Google Scholar 

  7. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  8. Sanson, M. S. P. & Biggin, P. C. Water at the nanoscale. Nature 414, 156–157 (2001).

    Google Scholar 

  9. Mann, D. J. & Halls, M. D. Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett. 90, 195503 (2003).

    Article  Google Scholar 

  10. Supple, S. & Quirke, N. Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90, 214501 (2003).

    Article  CAS  Google Scholar 

  11. Liu, Y. & Wang, Q. Transport behavior of water confined in carbon nanotubes. Phys. Rev. B 72, 085420 (2005).

    Article  Google Scholar 

  12. Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. & Sholl, D. S. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002).

    Article  Google Scholar 

  13. Holt, J. K. et al. Fast mass transport through sub–2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  14. Weber, S. E., Talapatra, S., Journet, C., Zambano, A. & Migone, A. D. Determination of the binding energy of methane on single-walled carbon nanotube bundles. Phys. Rev. B 61, 13150 (2000).

    Article  CAS  Google Scholar 

  15. Fujiwara, A. et al. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett. 336, 205–211 (2001).

    Article  CAS  Google Scholar 

  16. Kleinhammes, A. et al. Gas adsorption in single-walled carbon nanotubes studied by NMR. Phys. Rev. B 68, 075418 (2003).

    Article  Google Scholar 

  17. Rols, S. et al. Argon adsorption in open-ended single-wall carbon nanotubes. Phys. Rev. B 71, 155411 (2005).

    Article  Google Scholar 

  18. Maniwa, Y. et al. Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Japan. J. Appl. Phys. 38, L668–L670 (1999).

    Article  CAS  Google Scholar 

  19. Maniwa, Y. et al. Phase transition in confined water inside carbon nanotubes. J. Phys. Soc. Jpn 71, 2863–2866 (2002).

    Article  CAS  Google Scholar 

  20. Maniwa, Y. et al. Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005).

    Article  CAS  Google Scholar 

  21. Koga, K., Parra, R. D., Tanaka, H. & Zeng, X. C. Ice nanotube: What does the unit cell look like? J. Chem. Phys. 113, 5037–5040 (2000).

    Article  CAS  Google Scholar 

  22. Koga, K., Gao, G. T., Tanaka, H. & Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001).

    Article  CAS  Google Scholar 

  23. Bai, J. et al. Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes. J. Chem. Phys. 118, 3913–3916 (2003).

    Article  CAS  Google Scholar 

  24. Byl, O. et al. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 128, 12090–12097 (2006).

    Article  CAS  Google Scholar 

  25. Noon, W. H., Ausman, K. D., Smalley, R. E. & Ma, J. Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem. Phys. Lett. 355, 445–448 (2002).

    Article  CAS  Google Scholar 

  26. Tanaka, H. & Koga, K. Formation of ice nanotube with hydrophobic guests inside carbon nanotube. J. Chem. Phys. 123, 094706 (2005).

    Article  Google Scholar 

  27. Journet, C. et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997).

    Article  CAS  Google Scholar 

  28. Kataura, H. et al. Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 74, 349–354 (2002).

    Article  CAS  Google Scholar 

  29. Maniwa, Y. et al. Gas storage in single-walled carbon nanotubes. Mol. Cryst. Liq. Cryst. 340, 671–676 (2000).

    Article  CAS  Google Scholar 

  30. Zahab, A., Spina, L., Poncharal, P. & Marliere, C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 62, 10000–10003 (2000).

    Article  CAS  Google Scholar 

  31. Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A. & Smalley, R. E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255–257 (1997).

    Article  CAS  Google Scholar 

  32. Zhou, W. et al. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Phys. Rev. B 71, 205423 (2005).

    Article  Google Scholar 

  33. Pati, R., Zhang, Y., Nayak, S. K. & Ajayan, P. M. Effect of H2O adsorption on electron transport in a carbon nanotube. Appl. Phys. Lett. 81, 2638–2640 (2002).

    Article  CAS  Google Scholar 

  34. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  CAS  Google Scholar 

  35. Kadowaki, H. et al. Rietveld analysis and maximum entropy method of powder diffraction for bundles of single-walled carbon nanotubes. J. Phys. Soc. Jpn 74, 2290–2295 (2005).

    Article  Google Scholar 

  36. Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503 (2004).

    Article  Google Scholar 

  37. Smith, M. R. Jr et al. Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 41, 1221–1230 (2003).

    Article  CAS  Google Scholar 

  38. Nguyen, T. D. et al. A reversible molecular valve. Proc. Natl Acad. Sci. USA 102, 10029–10034 (2005).

    Article  CAS  Google Scholar 

  39. Maniwa, Y. et al. Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies. Phys. Rev. B 64, 241402(R) (2001).

    Article  Google Scholar 

  40. Maniwa, Y. et al. C70 molecular stumbling inside single-walled carbon nanotubes. J. Phys. Soc. Jpn 72, 45–48 (2003).

    Article  CAS  Google Scholar 

  41. Abe, M. et al. Structural transformation from single-wall to double-wall carbon nanotube bundles. Phys. Rev. B 68, 041405R (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

The main contribution of each author to the present work was as follows. K.M. contributed to the NMR and resisitivity measurements, S.O. to the resisitivity and XRD measurements, H. Kyakuno to MD calculations, T.H. to the NMR measurements, H. Kadowaki to the data analysis, S.S. and Y.A. to the sample preparation, H. Kataura to the high-purity sample preparation and characterization and Y.M. to the project planning and data analysis.

Corresponding author

Correspondence to Yutaka Maniwa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information I, II and II; figures S1, S2, S3, S4 and S5 (PDF 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maniwa, Y., Matsuda, K., Kyakuno, H. et al. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nature Mater 6, 135–141 (2007). https://doi.org/10.1038/nmat1823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing