Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Ion channels: From idea to reality

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: My 1967 thesis drawing of an excitable membrane showing three separate types of ion channels Na, K and leak (L), as well as the Na-K ATPase pump, a "carrier," a serine protease modeled after acetylcholinesterase, and lipids.
Figure 2: a, The squid Goligo pealei.
Figure 3: Early ideas of channel architecture and selectivity (1971–1972).
Figure 4: Three ions in the potassium channel.
Figure 5: Potassium channel demonstrates nature's mechanism of lowering the dielectric barrier.

References

  1. Hille, B. in Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 1992).

    Google Scholar 

  2. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  3. Hodkgin, A.L. & Keynes, R.D. The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61– 88 (1955).

    Google Scholar 

  4. Hille B. Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol. 21, 1–32 (1970).

    Article  CAS  Google Scholar 

  5. Hille, B. & Schwarz, W. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72, 409–442 (1978).

    Article  CAS  Google Scholar 

  6. Hille, B. The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol. 58, 599– 619 (1971).

    Article  CAS  Google Scholar 

  7. Bezanilla, F. & Armstrong, C.M. Negative conductance caused by the entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60, 588 (1972).

    Article  CAS  Google Scholar 

  8. Hille, B. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61, 669– 686 (1973).

    Article  CAS  Google Scholar 

  9. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  10. Milkman, R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc. Natl. Acad. Sci. USA 91, 3510– 3514 (1994).

    Article  CAS  Google Scholar 

  11. Heymann, J.B., Agre, P. & Engel, A. Progress on the structure and function of aquaporin 1. J. Struct. Biol. 121, 191–206 ( 1998).

    Article  CAS  Google Scholar 

  12. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 59, 413 (1971).

    Article  Google Scholar 

  13. Armstrong, C.M., Bezanilla, F.M. & Rojas, F. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62, 375–391 (1973).

    Article  CAS  Google Scholar 

  14. Armstrong, C.M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590 ( 1977).

    Article  CAS  Google Scholar 

  15. Armstrong, C.M. Sodium channels and gating currents. Physiol. Rev. 61, 645–683 (1981).

    Article  Google Scholar 

  16. Hoshi, T, Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  17. Liu, Y., Holmgren, M. Jurman, M.E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  Google Scholar 

  18. MacKinnon, R. & Miller, C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91, 335– 349 (1988).

    Article  CAS  Google Scholar 

  19. Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.N. & Jan, L.Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 ( 1987).

    Article  CAS  Google Scholar 

  20. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232– 235 (1991).

    Article  CAS  Google Scholar 

  21. Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258, 1152–1155 ( 1992).

    Article  CAS  Google Scholar 

  22. Schrempf, H. et al. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178 (1995).

    Article  CAS  Google Scholar 

  23. MacKinnon, R., Cohen, S.L., Kuo, A., Lee, A. & Chait, B.T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280, 106– 109 (1998).

    Article  CAS  Google Scholar 

  24. Gulbis, J.M., Mann, S. & MacKinnon, R. Structure of a voltage-dependent K+ channel β subunit. Cell 97, 943–952 (1999).

    Article  CAS  Google Scholar 

  25. Morais Cabral, J.H., Lee, A., Cohen, S.L., Chait, B.T., Li, M. & MacKinnon, R. Crystal structure and functional analysis of the HERG potassium channel N terminus: A eukaryotic PAS domain. Cell 95, 649– 655 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hille, B., Armstrong, C. & MacKinnon, R. Ion channels: From idea to reality. Nat Med 5, 1105–1109 (1999). https://doi.org/10.1038/13415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/13415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing