Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A transcriptional basis for physiology

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic of the first cotransfection assay and results of the initial experiment.
Figure 3: RXR heterodimeric partners and ligands.

References

  1. Evans, R.M. et al. Cell The initiation sites for RNA transcription in Ad2 DNA. 12, 733–739 (1977).

    Article  CAS  Google Scholar 

  2. Evans, R.M., Weber, J., Ziff, E. & Darnell, J.E. Premature termination during adenovirus transcription. Nature 278, 367–370 (1979).

    Article  CAS  Google Scholar 

  3. Harpold, M.M., Dobner, P.R., Evans, R.M. & Bancroft, F.C. Construction and identification by positive hybridization-translation of a bacterial plasmid containing a rat growth hormone structural gene sequence. Nucleic Acids Res. 5, 2039–2053 (1978).

    Article  CAS  Google Scholar 

  4. Barinaga, M., Bilezikjian, L.M., Vale, W.W., Rosenfeld, M.G. & Evans, R.M. Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature 314, 279–281 (1985).

    Article  CAS  Google Scholar 

  5. Weinberger, C. et al. Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science 228, 740–742 (1985).

    Article  CAS  Google Scholar 

  6. Hollenberg, S.M. et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318, 635–641 (1985).

    Article  CAS  Google Scholar 

  7. Weinberger, C., Hollenberg, S.M., Rosenfeld, M.G. & Evans, R.M. Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318, 670–672 (1985).

    Article  CAS  Google Scholar 

  8. Giguere, V., Hollenberg, S.M., Rosenfeld, M.G. & Evans, R.M. Functional domains of the human glucocorticoid receptor. Cell 46, 645–652 (1986).

    Article  CAS  Google Scholar 

  9. Sap, J. et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).

    Article  CAS  Google Scholar 

  10. Weinberger, C. et al. The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 (1986).

    Article  CAS  Google Scholar 

  11. Giguere, V., Yang, N., Segui, P. & Evans, R.M. Identification of a new class of steroid hormone receptors. Nature 331, 91–94 (1988).

    Article  CAS  Google Scholar 

  12. Hollenberg, S.M., Giguere, V., Segui, P. & Evans, R.M. Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 49, 39–46 (1987).

    Article  CAS  Google Scholar 

  13. Kumar, V. et al. Functional domains of the human estrogen receptor. Cell 51, 941–951 (1987).

    Article  CAS  Google Scholar 

  14. Petkovich, M., Brand, N.J., Krust, A. & Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–450 (1987).

    Article  CAS  Google Scholar 

  15. Giguere, V., Ong, E.S., Segui, P. & Evans, R.M. Identification of a receptor for the morphogen retinoic acid. Nature 330, 624–629 (1987).

    Article  CAS  Google Scholar 

  16. Mangelsdorf, D.J., Ong, E.S., Dyck, J.A. & Evans, R.M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345, 224–229 (1990).

    Article  CAS  Google Scholar 

  17. Heyman, R.A. et al. 9-cis-retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68, 397–406 (1992).

    Article  CAS  Google Scholar 

  18. Umesono, K., Giguere, V., Glass, C.K., Rosenfeld, M.G. & Evans, R.M. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336, 262–265 (1988).

    Article  CAS  Google Scholar 

  19. Umesono, K. & Evans, R.M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146 (1989).

    Article  CAS  Google Scholar 

  20. Umesono, K., Murakami, K.K., Thompson, C.C. & Evans, R.M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255–1266 (1991).

    Article  CAS  Google Scholar 

  21. Leid, M. et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68, 377–395 (1992).

    Article  CAS  Google Scholar 

  22. Yu, V.C. et al. RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67, 1251–1266 (1991).

    Article  CAS  Google Scholar 

  23. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J. & Evans, R.M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446–449 (1992).

    Article  CAS  Google Scholar 

  24. Marks, M.S. et al. H-2RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 11, 1419–1435 (1992).

    Article  CAS  Google Scholar 

  25. Zhang, X.K., Hoffmann, B., Tran, P.B., Graupner, G. & Pfahl, M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355, 441–446 (1992).

    Article  CAS  Google Scholar 

  26. Oro, A.E., McKeown, M. & Evans, R.M. Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347, 298–301 (1990).

    Article  CAS  Google Scholar 

  27. Yao, T.P., Segraves, W.A., Oro, A.E., McKeown, M. & Evans, R.M. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–67 (1992).

    Article  CAS  Google Scholar 

  28. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXR_. Nature 383, 728–731 (1996).

    Article  CAS  Google Scholar 

  29. Forman, B.M. et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995).

    Article  CAS  Google Scholar 

  30. Kliewer, S.A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  Google Scholar 

  31. Wang, H., Chen, J., Hollister, K., Sowers, L.C. & Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  Google Scholar 

  32. Parks, D.J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  Google Scholar 

  33. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  Google Scholar 

  34. Kliewer, S.A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

    Article  CAS  Google Scholar 

  35. Blumberg, B. et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 12, 3195–3205 (1998).

    Article  CAS  Google Scholar 

  36. Forman, B.M. et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature 395, 612–615 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Downes, R. Yu, D. Mangelsdorf, L. Kagan, V. Giguere and S. Moss for discussion and comments. I acknowledge J. Darnell for his criticism, rigor and inspiration. I wish to thank the dedicated and talented colleagues, students, postdoctoral fellows and research assistants with whom it has been my good fortune to work. I have been blessed with collaborators and colleagues who have been generous in sharing their insight and expertise. I am grateful for their friendship. Special thanks to E. Stevens and L. Ong for their many contributions, and to my wife, Ellen, and daughter, Lena, for their unwavering support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R. A transcriptional basis for physiology. Nat Med 10, 1022–1026 (2004). https://doi.org/10.1038/nm1004-1022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1004-1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing