Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Vaccines and the induction of functional antibodies: Time to look beyond the molecules of natural infection?

Abstract

Infection with some pathogens induces weak functional antibody responses that are non-protective, and there has been some skepticism about a role for antibodies in vaccine design. However, newer data show that antibodies can protect against infection with these pathogens, and new methods to elicit production of functional antibodies should be sought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HIV-1 glycoprotein gp120 minimizes the exposure of protein surface to antibody recognition on the envelope spike on the surface of the virion.

References

  1. Hilleman, M.R. Six decades of vaccine development—a personal history. Nature Med. 4, 507—514 ( 1998).

    Article  CAS  Google Scholar 

  2. Edelson, B.T., Cossart, P. & Unanue, E.R. Paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol. 163, 4087 –4090 (1999).

    CAS  Google Scholar 

  3. Casadevall, A. Antibody-mediated protection against intracellular pathogens. Trends Microbiol. 6, 102–107 (1998).

    Article  CAS  Google Scholar 

  4. Kostrikis, L.G., Cao, Y., Ngai, H., Moore, J.P. & Ho, D.D. Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. J. Virol. 70, 445–458 ( 1996).

    CAS  Google Scholar 

  5. Moore, J.P. et al. Inter- and intraclade neutralization of human immunodeficiency virus type 1: genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes. J. Virol. 70, 427–444 ( 1996).

    CAS  Google Scholar 

  6. Moog, C., Fleury, H.J.A., Pellegrin, I., Kirn, A. & Aubertin, A.M. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J. Virol. 71, 3734–3741 (1997).

    CAS  Google Scholar 

  7. Gauduin, M.-C. et al. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nature Med. 3, 1389–1393 (1997).

    Article  CAS  Google Scholar 

  8. Mascola, J.R. et al. Protection of macaques against pathogenic SHIV-89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    CAS  Google Scholar 

  9. Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian/human immunodeficiency virus infection. Nature Med. 6, 200–206 ( 2000).

    Article  CAS  Google Scholar 

  10. Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Med. 6, 207–210 ( 2000).

    Article  CAS  Google Scholar 

  11. Sanchez, A. et al. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J. Virol. 72, 6442– 6447 (1998).

    CAS  Google Scholar 

  12. Maruyama, T. et al. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol 73, 6024–6030 (1999).

    CAS  Google Scholar 

  13. Connolly, B.M. et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 179, (supplement 1 ), 5201–5217 (1999).

    Google Scholar 

  14. Roben, P. et al. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol. 68, 4821–4828 (1994).

    CAS  Google Scholar 

  15. Sattentau, Q.J. & Moore, J.P. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med. 182, 185– 196 (1995).

    Article  CAS  Google Scholar 

  16. Fouts, T.R., Binley, J.M., Trkola, A., Robinson, J.E. & Moore, J.P. Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex . J. Virol. 71, 2779–2785 (1997).

    CAS  Google Scholar 

  17. Parren, P.W.H.I. et al. Neutralization of HIV-1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity . J. Virol. 72, 3512–3519 (1998).

    CAS  Google Scholar 

  18. Wrin, T. et al. Neutralizing antibody responses to autologous and heterologous isolates of human immunodeficiency virus. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 7, 211–219 (1994).

    CAS  Google Scholar 

  19. Nyambi, P.N. et al. Study of the dynamics of neutralization escape mutants in a chimpanzee naturally infected with the simian immunodeficiency virus SIV cpz-ant . J. Virol. 71, 2320– 2330 (1997).

    CAS  Google Scholar 

  20. Murphy, B.R. & Webster, R. in Fields Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 1397–1446 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  21. Kwong, P.D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 ( 1998).

    Article  CAS  Google Scholar 

  22. Wyatt, R. et al. The antigenic structure of the HIV gp120 envelope glycoprotein . Nature 393, 705–711 (1998).

    Article  CAS  Google Scholar 

  23. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998).

    Article  CAS  Google Scholar 

  24. Griffin, D. E. & Bellini, W. J. in Fields Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 1267– 1312 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  25. Wolinsky, J.S. in Fields Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 899–930 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  26. Binley, J.M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627– 643 (2000).

  27. Reitter, J.N., Means, R.E. & Desrosiers, R.C. A role for carbohydrates in immune evasion in AIDS . Nature Med. 4, 679–684 (1998).

    Article  CAS  Google Scholar 

  28. Patten, P.A., Howard, R.J. & Stemmer, W.P. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724 –733 (1997).

    Article  CAS  Google Scholar 

  29. Dempsey, P.W., Allison, M.E.D., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  Google Scholar 

  30. Barber, B.H. The immunotargeting approach to adjuvant-independent subunit vaccine design . Sem. Immunol. 9, 293– 301 (1997).

    Article  CAS  Google Scholar 

  31. Wang, H., Griffiths, M.N., Burton, D.R. & Ghazal, P. Rapid antibody responses by low-dose, single-step, dendritic cell-targeted immunization. Proc. Natl. Acad. Sci. USA (in the press).

  32. Steward, M.W., Stanley, C.M. & Obeid, O.E. A mimotope from a solid-phase peptide library induces a measles virus-neutralizing and protective antibody response. J. Virol. 69, 7668–7673 (1995).

    CAS  Google Scholar 

  33. Chargelegue, D. et al. A peptide mimic of a protective epitope of respiratory syncytial virus selected from a combinatorial library induces virus-neutralizing antibodies and reduces viral load in vivo. J. Virol. 72, 2040–2046 (1998).

    CAS  Google Scholar 

  34. Puntoriero, G. et al. Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J. 17, 3521–3533 (1998).

    Article  CAS  Google Scholar 

  35. Mulligan, M.J. & Weber, J. Human trials of HIV-1 vaccines. AIDS 13, S105– S112 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Chanock, F. Chisari, J. Mascola, J. Moore and P. Poignard for comments on the manuscript. We acknowledge the financial support of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, D., Parren, P. Vaccines and the induction of functional antibodies: Time to look beyond the molecules of natural infection?. Nat Med 6, 123–125 (2000). https://doi.org/10.1038/72200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/72200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing