Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation

Abstract

Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-κB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversal of diabetes-induced endothelial dysfunction by pharmacological inhibition of PARP.
Figure 2: Reactive nitrogen species generation, ssDNA breakage and PARP activation in diabetic blood vessels.
Figure 3: Reactive nitrogen species generation, ssDNA breakage and PARP activation in endothelial cells placed in high glucose.
Figure 4: PARP-deficient vascular rings are resistant against high-glucose–induced loss of endothelial dysfunction.
Figure 5: EMSA analysis of the effect of PARP on NF-κB activation.
Figure 6

Similar content being viewed by others

References

  1. Pieper, A.A., Verma, A., Zhang, J. & Snyder, S.H. Poly (ADP-ribose) polymerase, NO and cell death. Trends Pharmacol. Sci. 20, 171–181 (1999).

    Article  CAS  Google Scholar 

  2. Cell Death: The Role of PARP (ed. Szabó, C.) (CRC Press, Boca Raton, Florida, 2000).

  3. Eliasson, M.J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997).

    Article  CAS  Google Scholar 

  4. Zingarelli, B., Salzman, A.L. & Szabó, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94 (1998).

    Article  CAS  Google Scholar 

  5. Burkart, V. et al. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic β-cell destruction and diabetes development induced by streptozocin. Nature Med. 5, 314–319 (1999).

    Article  CAS  Google Scholar 

  6. Pieper, A.A. et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 96, 3059–3064 (1997).

    Article  Google Scholar 

  7. Szabó, C., Cuzzocrea, S., Zingarelli, B., O'Connor, M. & Salzman, A.L. Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J. Clin. Invest. 100, 723–735 (1997).

    Article  Google Scholar 

  8. Oliver, F.J. et al. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454 (1999).

    Article  CAS  Google Scholar 

  9. Tooke, J.E. & Goh, K.L. Vascular function in Type 2 diabetes mellitus and pre-diabetes: the case for intrinsic endotheiopathy. Diabet. Med. 16, 710–715 (1999).

    Article  CAS  Google Scholar 

  10. Keen, H., Clark, C. & Laakso, M. Reducing the burden of diabetes: managing cardiovascular disease. Diabetes Metab. Res. Rev. 15, 186–196 (1999).

    Article  CAS  Google Scholar 

  11. Rodriguez-Manas, L. et al. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats. Br. J. Pharmacol. 123, 1495–1502 (1998).

    Article  CAS  Google Scholar 

  12. Graier, W.F., Posch, K., Fleischhacker, E., Wascher, T.C. & Kostner, G.M. Increased superoxide anion formation in endothelial cells during hyperglycemia: an adaptive response or initial step of vascular dysfunction? Diabetes Res. Clin. Pract. 45, 153–160 (1999).

    Article  CAS  Google Scholar 

  13. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    Article  CAS  Google Scholar 

  14. Ischiropoulos, H. et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431–437 (1992).

    Article  CAS  Google Scholar 

  15. Halliwell, B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 411, 157–160 (1997).

    Article  CAS  Google Scholar 

  16. Furchgott, R.F. Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol. Scand. 139, 257–270 (1990).

    Article  CAS  Google Scholar 

  17. Pieper, G.M., Jordan, M., Adams, M.B. & Roza, A. Syngeneic pancreatic islet transplantation reverses endothelial dysfunction in experimental diabetes. Diabetes 44, 1106–1113 (1995).

    Article  CAS  Google Scholar 

  18. Kobayashi, T. & Kamata, K. Effect of insulin treatment on smooth muscle contractility and endothelium-dependent relaxation in rat aortae from established STZ-induced diabetes. Br. J. Pharmacol. 127, 835–842 (1999).

    Article  CAS  Google Scholar 

  19. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  Google Scholar 

  20. Sallmann, F.R., Vodenicharov, M.D., Wang, Z.Q. & Poirier, G.G. Characterization of sPARP-1. J. Biol. Chem. 275, 15504–15511 (2000).

    Article  CAS  Google Scholar 

  21. Szabó, C., Zingarelli, B., O'Connor, M. & Salzman, A.L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93, 1753–1758 (1996).

    Article  Google Scholar 

  22. Pieper, G.M., Langenstroer, P. & Siebeneich, W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc. Res. 34, 145–156 (1997).

    Article  CAS  Google Scholar 

  23. Du, X., Stocklauser-Farber, K. & Rosen, P. Generation of reactive oxygen intermediates, activation of NF-κB, and induction of apoptosis in human endothelial cells by glucose: role of NO synthase? Free Radic. Biol. Med. 27, 752–763 (1999).

    Article  CAS  Google Scholar 

  24. Karasu, C. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species. Eur. J. Pharmacol. 392, 163–173 (2000).

    Article  CAS  Google Scholar 

  25. Pieper, G.M., Moore-Hilton, G. & Roza, A.M. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 58, PL147–512 (1996).

    Article  CAS  Google Scholar 

  26. Cosentino, F., Hishikawa, K., Katusic, Z.S. & Luscher, T.F. High glucose increases NO synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96, 25–28 (1997).

    Article  CAS  Google Scholar 

  27. Nishigaki, R. et al. Ultrastructural changes and immunohistochemical localization of nitric oxide synthase, advanced glycation end products and NF-κB in aorta of streptozotocin treated Mongolian gerbils. Nippon Ika Daigaku Zasshi 66, 166–175 (1999).

    Article  CAS  Google Scholar 

  28. Eiserich, J.P. et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391, 393–397 (1998).

    Article  CAS  Google Scholar 

  29. Szabó, C. et al. Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc. Natl. Acad. Sci. USA 95, 3867–3872 (1998).

    Article  Google Scholar 

  30. Pieper, G.M. & Riaz-ul-Haq, G. Activation of nuclear factor-κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J. Cardiovasc. Pharmacol. 30, 528–532 (1997).

    Article  CAS  Google Scholar 

  31. Morigi, M. et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion. J. Clin. Invest. 101, 1905–1915 (1998).

    Article  CAS  Google Scholar 

  32. Barouch, F.C. et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol. Vis. Sci 41, 1153–1158 (2000).

    CAS  PubMed  Google Scholar 

  33. Wang, Z.Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995).

    Article  CAS  Google Scholar 

  34. Kaufmann, S.H., Mesner, P.W. Jr., Samejima, K., Tone, S. & Earnshaw, W.C. Detection of DNA cleavage in apoptotic cells. Methods Enzymol. 322, 3–15 (2000).

    Article  CAS  Google Scholar 

  35. Shen, H. & Ong, C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic. Biol. Med. 28, 529–536 (2000).

    Article  CAS  Google Scholar 

  36. Didier, M. et al. DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J. Neurosci. 16, 2238–2250 (1996).

    Article  CAS  Google Scholar 

  37. Zhang, J. Use of biotinylated NAD to label and purify ADP-ribosylated proteins. Methods Enzymol. 280, 255–265 (1997).

    Article  CAS  Google Scholar 

  38. Scott, G.S., Jakeman, L.B., Stokes, B.T. & Szabó, C. Peroxynitrite production and activation of poly (adenosine diphosphate-ribose) synthetase in spinal cord injury. Ann. Neurol. 45, 120–124 (1999).

    Article  CAS  Google Scholar 

  39. Gerritsen, M.E. et al. Activation-dependent isolation and culture of murine pulmonary microvascular endothelium. Microcirculation 2, 151–163 (1995).

    Article  CAS  Google Scholar 

  40. Klaidman L.K., Leung, A.C. & Adams, J.C. Jr. High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal. Biochem. 228, 312–317 (1995).

    Article  CAS  Google Scholar 

  41. Lamas S., Michel, T., Brenner, B.M, Marsden, P.A. Nitric oxide synthesis in endothelial cells: evidence for a pathway inducible by TNF-α. Am. J. Physiol. 261, C634–641 (1991).

    Article  CAS  Google Scholar 

  42. Lantin-Hermoso, R.L. et al. Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium. Am. J. Physiol. 273, L119–126 (1997).

    CAS  PubMed  Google Scholar 

  43. Gilad, E. et al. Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NF-κB activation. FASEB J. 12, 685–693 (1998).

    Article  CAS  Google Scholar 

  44. Banasik, M., Komura, H., Shimoyama, M. & Ueda, K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267, 1569–1575 (1992).

    CAS  PubMed  Google Scholar 

  45. Virag, L. et al. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol. Pharmacol. 56, 824–833 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to C.S. (R01GM60915 and R21HL65145). F.G.S. was supported by a fellowship from FAPESP (Brazil). L.V. was supported by a Bolyai Fellowship of the hungarian Academy of Sciences and L.L. was supported by the ADUMED Foundation (Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Szabó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia Soriano, F., Virág, L., Jagtap, P. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7, 108–113 (2001). https://doi.org/10.1038/83241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing