Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

A new twist in the function of the cardiac lipid droplet

Peroxisome proliferator-activated receptors (PPARs) are important transcriptional regulators of genes involved in energy metabolism. Hydrolysis of cardiac lipid droplets by adipose triglyceride lipase (ATGL) is now shown to be required for PPAR-mediated gene regulation and mitochondrial function, suggesting new therapeutic possibilities for neutral lipid storage disease caused by mutations in ATGL (also known as PNPLA2) (pages 1076–1085).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fatty acids (FAs), which are the major energy substrate for the heart, are derived predominantly from hydrolysis of triglyceride (TAG-rich lipoproteins and, to a lesser extent, from albumin-conjugated non-esterified FAs.

Katie Vicari

References

  1. Abel, E.D. & Doenst, T. Cardiovasc. Res. 90, 234–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haemmerle, G. et al. Nat. Med. 17, 1076–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zechner, R., Kienesberger, P.C., Haemmerle, G., Zimmermann, R. & Lass, A. J. Lipid Res. 50, 3–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Duncan, J.G. et al. Circulation 121, 426–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duncan, J.G., Fong, J.L., Medeiros, D.M., Finck, B.N. & Kelly, D.P. Circulation 115, 909–917 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, S. & Reddy, J.K. Biochim. Biophys. Acta 1771, 936–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, S.Y., Leonard, J.L. & Davis, P.J. Endocr. Rev. 31, 139–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banke, N.H. et al. Circ. Res. 107, 233–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bugger, H. & Abel, E.D. Cardiovasc. Res. 88, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wende, A.R. & Abel, E.D. Biochim. Biophys. Acta 1801, 311–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Szczepaniak, L.S., Victor, R.G., Orci, L. & Unger, R.H. Circ. Res. 101, 759–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Abbott, B.D., Wood, C.R., Watkins, A.M., Das, K.P. & Lau, C.S. PPAR Res. 2010, 690907 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Nissen, S.E., Wolski, K. & Topol, E.J. J. Am. Med. Assoc. 294, 2581–2586 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Dale Abel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, E. A new twist in the function of the cardiac lipid droplet. Nat Med 17, 1045–1046 (2011). https://doi.org/10.1038/nm.2432

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2432

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing