Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Cell lineage regulators in B and T cell development

Abstract

This special issue highlights a pivotal set of regulatory molecules that have emerged as central controllers of cell-type identity in the immune system. Each in its own way has been considered as a kind of 'master' regulator of a particular cell fate choice, but the actual modes of action of these factors vary widely. The comparison among them sheds light on the different ways that an essential regulatory input can affect cellular identity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four modes of action of cell type specification factors in fate determination networks.

References

  1. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  CAS  Google Scholar 

  2. Gehring, W.J. & Ikeo, K. Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–377 (1999).

    Article  CAS  Google Scholar 

  3. Jimenez, M.A., Akerblad, P., Sigvardsson, M. & Rosen, E.D. Critical role for ebf1 and ebf2 in the adipogenic transcriptional cascade. Mol. Cell. Biol. 27, 743–757 (2007).

    Article  CAS  Google Scholar 

  4. Hagman, J. & Lukin, K. Transcription factors drive B cell development. Curr. Opin. Immunol. 18, 127–134 (2006).

    Article  CAS  Google Scholar 

  5. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  Google Scholar 

  6. Liberg, D., Sigvardsson, M. & Åkerblad, P. The EBF/Olf/Collier family of transcription factors: regulators of differentiation in cells originating from all three embryonal germ layers. Mol. Cell. Biol. 22, 8389–8397 (2002).

    Article  CAS  Google Scholar 

  7. Hasegawa, S.L. et al. Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev. Biol. 301, 568–577 (2007).

    Article  CAS  Google Scholar 

  8. Kaufman, C.K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    Article  CAS  Google Scholar 

  9. Lim, K.C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat. Genet. 25, 209–212 (2000).

    Article  CAS  Google Scholar 

  10. Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F.Y. & Orkin, S.H. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210, 305–321 (1999).

    Article  CAS  Google Scholar 

  11. Pandolfi, P.P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11, 40–44 (1995).

    Article  CAS  Google Scholar 

  12. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  13. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  Google Scholar 

  14. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  Google Scholar 

  15. Zheng, Y. & Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8, 457–462 (2007).

    Article  CAS  Google Scholar 

  16. Davis, M.M. Blimp-1 over Budapest. Nat. Immunol. 8, 445–447 (2007).

    Article  CAS  Google Scholar 

  17. Glimcher, L. Trawling for treasure: tales of T-bet. Nat. Immunol. 8, 448–450 (2007).

    Article  CAS  Google Scholar 

  18. Nera, K.P. et al. Loss of Pax5 promotes plasma cell differentiation. Immunity 24, 283–293 (2006).

    Article  CAS  Google Scholar 

  19. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).

    Article  CAS  Google Scholar 

  20. Calame, K. Transcription factors that regulate memory in humoral responses. Immunol. Rev. 211, 269–279 (2006).

    Article  CAS  Google Scholar 

  21. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  Google Scholar 

  22. Hwang, E.S., Hong, J.H. & Glimcher, L.H. IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J. Exp. Med. 202, 1289–1300 (2005).

    Article  CAS  Google Scholar 

  23. Yin, Z. et al. T-bet expression and failure of GATA-3 cross-regulation lead to default production of IFN-γ by γδ T cells. J. Immunol. 168, 1566–1571 (2002).

    Article  CAS  Google Scholar 

  24. Kim, P.J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  Google Scholar 

  25. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT Cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  26. Tanigaki, K. & Honjo, T. Regulation of lymphocyte development by Notch signaling. Nat. Immunol. 8, 451–456 (2007).

    Article  CAS  Google Scholar 

  27. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    Article  CAS  Google Scholar 

  28. Martins, G.A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    Article  CAS  Google Scholar 

  29. Gong, D. & Malek, T.R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    Article  CAS  Google Scholar 

  30. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  Google Scholar 

  31. Taghon, T., Yui, M.A., Pant, R., Diamond, R.A. & Rothenberg, E.V. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    Article  CAS  Google Scholar 

  32. Ciofani, M., Knowles, G.C., Wiest, D.L., von Boehmer, H. & Zúñiga-Pflücker, J.C. Stage-specific and differential Notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25, 105–116 (2006).

    Article  CAS  Google Scholar 

  33. Garbe, A.I., Krueger, A., Gounari, F., Zúñiga-Pflücker, J.C. & von Boehmer, H. Differential synergy of Notch and T cell receptor signaling determines αβ versus γδ lineage fate. J. Exp. Med. 203, 1579–1590 (2006).

    Article  CAS  Google Scholar 

  34. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  Google Scholar 

  35. Minter, L.M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat. Immunol. 6, 680–688 (2005).

    Article  CAS  Google Scholar 

  36. Dontje, W. et al. Delta-like1-induced Notch1 signalling regulates the human plasmacytoid dendritic cell versus T cell lineage decision through control of GATA-3 and Spi-B. Blood 107, 2446–2452 (2006).

    Article  CAS  Google Scholar 

  37. Taghon, T.N., David, E.-S., Zúñiga-Pflücker, J.C. & Rothenberg, E.V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    Article  CAS  Google Scholar 

  38. Höflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    Article  Google Scholar 

  39. Hernández-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  Google Scholar 

  40. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  41. Laky, K., Fleischacker, C. & Fowlkes, B.J. TCR and Notch signaling in CD4 and CD8 T cell development. Immunol. Rev. 209, 274–283 (2006).

    Article  CAS  Google Scholar 

  42. Weng, A.P. et al. c-Myc is an important direct target of Notch1 in T cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  Google Scholar 

  43. Zhou, M. et al. Friend of GATA-1 represses GATA-3-dependent activity in CD4+ T cells. J. Exp. Med. 194, 1461–1471 (2001).

    Article  CAS  Google Scholar 

  44. Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell 7, 607–617 (2004).

    Article  CAS  Google Scholar 

  45. Kee, B.L. & Murre, C. Induction of Early B Cell Factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188, 699–713 (1998).

    Article  CAS  Google Scholar 

  46. Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).

    Article  CAS  Google Scholar 

  47. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  Google Scholar 

  48. Mullen, A.C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nat. Immunol. 3, 652–658 (2002).

    Article  CAS  Google Scholar 

  49. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  50. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  Google Scholar 

  51. Nera, K.P. & Lassila, O. Pax5–a critical inhibitor of plasma cell fate. Scand. J. Immunol. 64, 190–199 (2006).

    Article  CAS  Google Scholar 

  52. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  Google Scholar 

  53. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  Google Scholar 

  54. Williams, L.M. & Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  Google Scholar 

  55. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  Google Scholar 

  56. Beima, K.M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J. Biol. Chem. 281, 11992–12000 (2006).

    Article  CAS  Google Scholar 

  57. Hatton, R.D. et al. A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25, 717–729 (2006).

    Article  CAS  Google Scholar 

  58. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  Google Scholar 

  59. Smith, E.M., Åkerblad, P., Kadesch, T., Axelson, H. & Sigvardsson, M. Inhibition of EBF function by active Notch signaling reveals a novel regulatory pathway in early B-cell development. Blood 106, 1995–2001 (2005).

    Article  CAS  Google Scholar 

  60. Souabni, A., Cobaleda, C., Schebesta, M. & Busslinger, M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17, 781–793 (2002).

    Article  CAS  Google Scholar 

  61. Jenkinson, E.J., Jenkinson, W.E., Rossi, S.W. & Anderson, G. The thymus and T cell commitment: the right niche for Notch? Nat. Rev. Immunol. 6, 551–555 (2006).

    Article  CAS  Google Scholar 

  62. Benz, C. & Bleul, C.C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med. 202, 21–31 (2005).

    Article  CAS  Google Scholar 

  63. Sambandam, A. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663–670 (2005).

    Article  CAS  Google Scholar 

  64. Tan, J.B., Visan, I., Yuan, J.S. & Guidos, C.J. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat. Immunol. 6, 671–679 (2005).

    Article  CAS  Google Scholar 

  65. Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zúñiga-Pflücker, J.C. Maintenance of T cell specification and differentiation requires recurrent Notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    Article  CAS  Google Scholar 

  66. De Smedt, M., Hoebeke, I., Reynvoet, K., Leclercq, G. & Plum, J. Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T cell lineage in thymus microenvironment. Blood 106, 3498–3506 (2005).

    Article  CAS  Google Scholar 

  67. Laiosa, C.V., Stadtfeld, M., Xie, H., Andres-Aguayo, L. & Graf, T. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25, 731–744 (2006).

    Article  CAS  Google Scholar 

  68. Franco, C.B. et al. Notch/Delta signaling constrains re-engineering of pro-T cells by PU.1. Proc. Natl. Acad. Sci. USA 103, 11993–11998 (2006).

    Article  CAS  Google Scholar 

  69. Ciofani, M. & Zúñiga-Pflücker, J.C. A survival guide to early T cell development. Immunol. Res. 34, 117–132 (2006).

    Article  CAS  Google Scholar 

  70. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, San Diego, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen V Rothenberg.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothenberg, E. Cell lineage regulators in B and T cell development. Nat Immunol 8, 441–444 (2007). https://doi.org/10.1038/ni1461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing